

test & MEASUREMENT WORLD

THE MAGAZINE FOR QUALITY IN ELECTRONICS

PROJECT PROFILE

Calibrated radio

37

SUBASSEMBLY TEST

**Nonsignaling
technique
improves RF test**

49

INSTRUMENTS

**Nomadic
products put
power sources
to the test**

55

TECH TRENDS

**The wall
between
structural and
functional test**

16

TECH TRENDS

**Take lens MTF
into account**

33

CLICK HERE TO

RENEW

your **FREE** **magazine**
subscription

CLICK HERE TO

START

a **FREE** **e-newsletter**
subscription

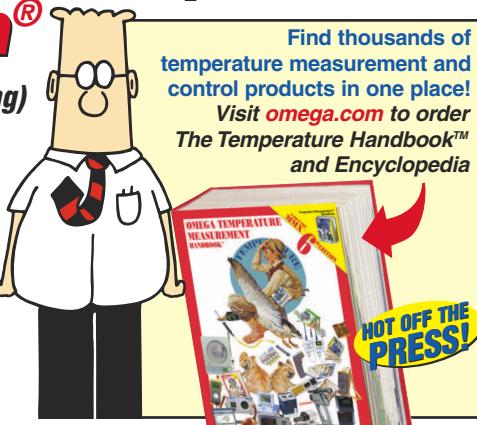
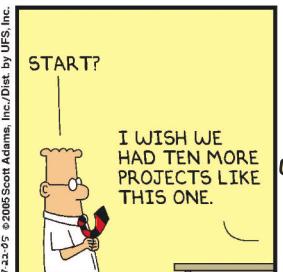
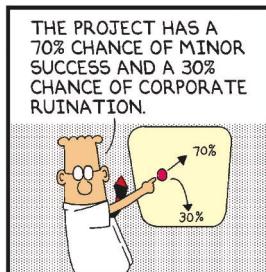
Todd Marcucci, global lab manager at Littelfuse.

PROTECTION at FULL POWER

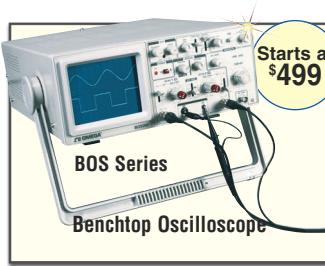
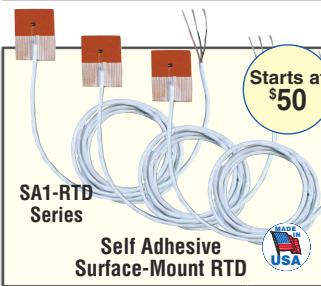
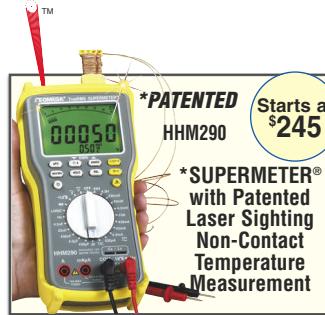
To ensure their components protect your circuits, Littelfuse engineers may damage or destroy their parts, sometimes in spectacular fashion.

Page 38

we transform




SCALABLE PLATFORM ARCHITECTURE | LOWERS LIFETIME COST-OF-OWNERSHIP | SPEEDS TIME TO MARKET | IMPROVES YIELD | SUPPORTED GLOBALLY

Our customers create the products that transform the way we live, work and play, by delivering bold new functionality and ever-increasing performance to the consumer. And Verigy's solutions are transforming to meet the changing needs of our customers. Our powerful, flexible, and innovative tools help our customers compress development time and increase yield, supporting faster time to market and lower production costs. Learn how Verigy can help you transform your business to produce brilliant results: www.verigy.com/go/transform.




Need More Temperature Options?

Shop online at **omega.com**®

100,000 process control and measurement products (and counting)

Go to: www.omega.com/dilbert for your daily dose of DILBERT!

&**analab**® Professional Solutions for ALL Your Compliance Requirements

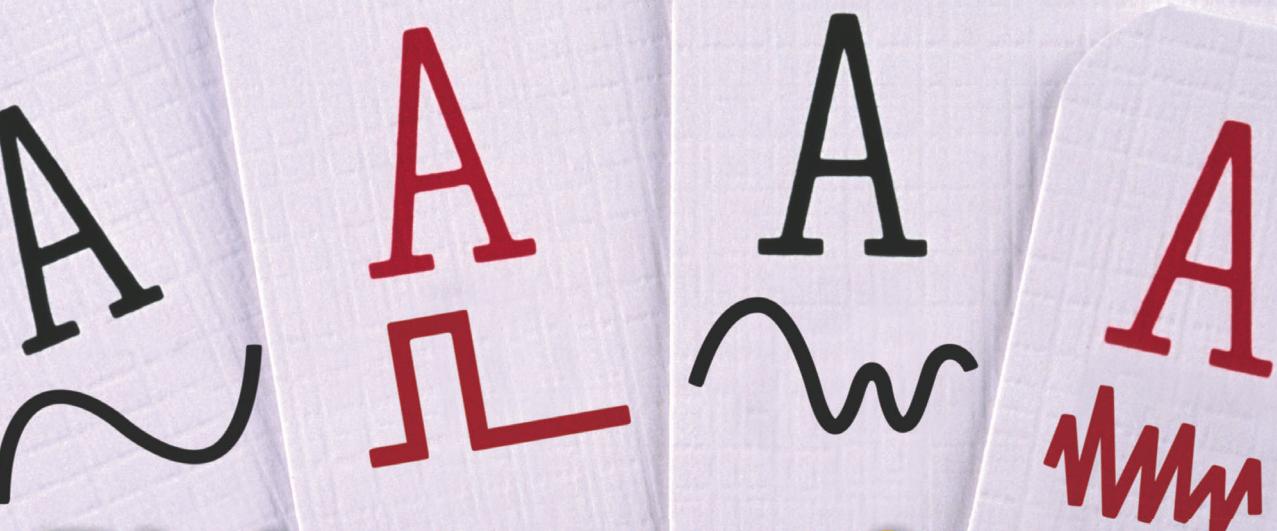
- FCC 2.948 Listed Test Site
- Radiated Emissions and Conducted Emissions Test Reports Accepted by the FCC for Product Certification
- Testing to the latest European Commission Directives and Harmonized Standards
- Superior Engineering Support and Close Consultation for Your Product Evaluation
- 3 and 10 Meter Outside Area Test Site for Radiated Emissions Testing

analab1.com® 1-800-2625229® 1-800-analab-x® With local accommodations, Analab is your one-stop source for CE and FCC product compliance needs.

For Sales and Service, Call TOLL FREE

1-888-82-66342®
1-888-TC-OMEGA

Based on an Original Norman Rockwell illustration © The Curtis Publishing Company
© United Feature Syndicate, Inc.


Shop Online:
etestandmeasurement.com

*PATENTED
Covered by U.S. and International
patents and pending applications

Shop Online at

omega.com®
OMEGA®

© COPYRIGHT 2008 OMEGA ENGINEERING, INC. ALL RIGHTS RESERVED

Pick a waveform

Any waveform

© Agilent Technologies, Inc. 2008

Agilent 33220A/33250A

Function and Arbitrary Waveform Generator

FREE

Arbitrary Waveform Library

www.agilent.com/find/any_wave

If you see a function generator in use today, the odds are it's an Agilent. Why is Agilent the best-seller?

Versatility. Our generators produce the most powerful array of waveforms in the industry. They include all the functions you'd expect, with pulse and arbitrary waves of up to 64k points—accurate, stable, low noise. And the 33220A is the first arb function generator designated LXI compliant.

Right now, you can get our Arbitrary Waveform Library absolutely free. The library includes 20+ waveforms that can be used immediately or modified to suit your own applications.

It's your deal. Call today to learn more, or visit us at
www.agilent.com/find/any_wave

Agilent Authorized Distributors

800-832-4866 www.techni-tool.com/agilent.htm

Agilent Technologies

Test & MEASUREMENT WORLD®

CONTENTS

COVER BY: LANE CAMERON

Instruments / Page 55

DEPARTMENTS

- 7 Editor's note
- 11 Test voices
- 13 News briefs
- 60 Product update
- 72 Viewpoint
- 8 Editorial staff
- 69 Business staff

TECH TRENDS

- 16 The wall between structural and functional test
- 33 Take lens MTF into account

TEST DIGEST

- 34 Oscilloscopes aid embedded designs
- 34 RF book's new edition adds EDA tools, skips test
- 35 IPC prefers devil it doesn't know

TEST REPORT SUPPLEMENT

63 PXI Test Report

- Extending PXI
- With a decade behind us, it's full steam ahead!
- Do you calibrate PXI?
- PXI and bench instruments evenly matched

RENEW YOUR T&MW SUBSCRIPTION ONLINE: WWW.GETFREEMAG.COM/TMW

THE ORIGINAL PUSH-PULL CONNECTOR

More than 50'000 connector combinations

The modular design of LEMO products provides more than 50'000 different combinations of connectors with a large choice of contact configurations:

- High and low voltage
- Coaxial and triaxial
- Quadrap
- Thermocouple
- Fibre optic
- Fluidic and pneumatic
- Hybrid
- Custom solutions

LEMO SA - Switzerland

Phone: (+41 21) 695 16 00
Fax: (+41 21) 695 16 02
info@lemo.com

Contact your local partner on www.lemo.com

ONLINE
www.tmworld.com

Check out these exclusive features on the *Test & Measurement World* Web site:

Test and measurement giants

Senior technical editor Martin Rowe says that *Bill & Dave: How Hewlett and Packard Built the World's Greatest Company* is "a must read for anyone associated with Hewlett-Packard or Agilent Technologies—employees, alumni, customers, and competitors." Read the complete review and then share your Bill and Dave stories.

www.tmworld.com/bookreview_hp

Blog commentaries and links

Taking the Measure

Rick Nelson, Chief Editor

- UK group swats at teen-repelling Mosquito
- Free engineering calculator

Rowe's and Columns

Martin Rowe, Senior Technical Editor

- Engineering or pharmacy?
- Where is VXI headed?

www.tmworld.com/blogs

Compare product specs

Check out these product-comparison charts compiled by *T&MW* editors:

- Fiber-optic power meters
- LXI-based RF/microwave instruments
- Handheld oscilloscopes
- Spectrum analyzers (2.5 GHz and up)

www.tmworld.com/product_charts

Take a T&M Challenge

Answer our latest challenge question, and you could win a TomTom ONE navigation system courtesy of Yokogawa, the challenge sponsor.

www.tmworld.com/challenge

WHAT IS YOUR SURPLUS EQUIPMENT WORTH?

SHOULD YOU RECYCLE, REUSE, OR RESELL
YOUR SURPLUS EQUIPMENT?

Visit the site that helps you determine what is best for you.

www.tmworld.com/dispodog

We make you part of the story! Let our T&M solutions show you how.

Thursday, June 3, 2010

B U S I N E S S

Demand for mobile high-speed connections exceeds all forecasts

4G technologies adding billions to the bottom line

MUNICH — The equipment suppliers of wireless radio network infrastructures as well

The substantial level of investments over the past several years in the development and standardization is now paying off. Since the

The success of 4G technologies is giving companies that supply equipment for radio network infrastructures a further boost in sales because of the continuously increasing demand for the new Internet services. And the market doesn't end here: New service providers are carrying out innovative business models based on Cloud networks are also entering into the market, thus driving the demand for technical equipment even further.

Unique test and measurement products for the 3GPP LTE, HSPA+, and WiMAX standards, including MIMO functionality: That's what we offer to make your path to market as smooth as possible. Our solutions make the difference – from the initial idea to the finished product. See for yourself!

The reason for the upsurge in worldwide demand for the Rohde & Schwarz products is the

www.rohde-schwarz.com/ad/technologies

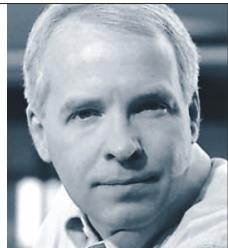
 ROHDE & SCHWARZ

TOD
Finance Minister
mincing his words
a pretty good idea
doing," he said
a general partner
In addition
institution has
roughly 20 billion
Frankfurt's
hotel. The
were met with
this didn't stop
"We suffer from
Social Democrats
on buying
profit."

That was only
three weeks ago.
disaster at
had become
chairman of
the president
Financial
(BaFin),
longer is
Düsseldorf
verge of executive
decisions
principal
governme
Kreditanstalt
(KfW),
making

Find out
pubann
frantic
meeting
board,
Direct
KfW, one
of which
Sanofi
could
since
triggered
bail
what
KfW

Looking for a basket full of functionality?


Only Keithley offers a power supply, current source, DMM, ARB waveform and V or I pulse generator, and trigger controller all rolled into one.

- **Boost your test throughput by 2–4x** with our embedded Test Script Processor (TSP™) that blows away GPIB bottlenecks.
- **Integrate and control multiple instruments easily**, economically, and without a chassis with TSP-Link™ high speed trigger and communication bus.
- **Control your cost of ownership** by scaling your channel count precisely for your application.
- **Perform DC and pulse testing from femtoamps and microvolts** with our low current test solutions for semiconductor components.

Go to www.keithley.com/rolled and try a demo.

RICK NELSON
CHIEF EDITOR

Fractal engineering vs. synergy

Engineering is a segmented profession. It divides into high-level disciplines—mechanical, electrical, civil, chemical, structural, automotive, aerospace, and so on. When you look closely at these high-level disciplines and begin to break them down, you find—fractal like—that you don't make much headway in cutting down on the number of areas of engineering specialization available to you. Just as a fractal divides and repeatedly subdivides into components that appear to be as complex as the original, engineering disciplines divide and repeatedly subdivide into specialties of increasingly fine yet no less complex granularity.

It's quite appropriate that this be the case. Engineering is much too complex for any practitioner to become

proficient in more than a very narrow number of specialization areas, and it's

necessary to rely on teams made up of various specialists to cover all the facets necessary to get a product to market. Despite the emergence of electronic-system-level (ESL) design, it's difficult for register-transfer-level (RTL) designers, for example, to grasp all the complexities of the aerospace, medical, or automotive products that the integrated circuits they are designing might ultimately populate.

Unfortunately, specialization often results in the formation of walls. The classic wall separates design and test, but even within test, walls arise that are counterproductive to cost-effective production of quality products. In this issue, I report on a wall that arises between two test disciplines (p. 16). Here's Glenn Woppman, president and CEO of Asset InterTech, when commenting on

his firm's acquisition of International Test Technologies: "One thing we've found is another wall—hopefully not as high a wall—between structural test and functional test."

What's needed is a holistic approach toward our subject matter that can break down the walls between design and test and the various test subsets. And holistic approaches toward electrical engineering do exist. Here is Steve Wigley of the Semiconductor Test Consortium and LTX, writing at www.tmworld.com/guests: "the STIX initiative...dramatically increases the potential positive impact of the consortium on the semiconductor industry, by extending its influence beyond simply the tester architecture. It represents a more holistic approach to addressing the technical and economic issues that affect the entire global semiconductor test supply chain."

The bottom line: Holistic is good, but even the best efforts of today bring together only the most closely related fractal components of the electrical-engineering profession. And that brings up why I'm writing this. I've been writing and reporting for *Test & Measurement World* for nearly 10 years, most recently serving as Chief Editor. I'll be retaining that position while also taking on the responsibilities of *EDN* Editor in Chief. In that role, I'm rejoining the magazine at which I first got my start in technical journalism after leaving the engineering profession.

Going forward, the respective *EDN* and *T&MW* staffs will continue to focus on their specialties, but will also be concentrating on the synergistic intersections of their respective areas of expertise in an effort to bring you the information you need to succeed in this multi-faceted world. As we move forward, I welcome your comments. Contact me at rnelson@reedbusiness.com. *T&MW*

**“The bottom line:
Holistic is good.”**

> > > POST YOUR COMMENTS AT WWW.TMWORLD.COM/BLOG.

Switching?

Controlled via
TCP/IP

Products span DC to 40GHz

Series G2

Rack Mountable Switching Systems

It's what we do!

- 1000's of standard plug-in modules available
- Built-in Ethernet, GPIB and Serial ports with LXI support
- Hot-swap redundant power supplies
- Field upgradable firmware
- Rugged aluminum construction
- Various sized units to meet most needs
- Built-in rack and chassis slide mounting
- Solid-state, relay, digital or fiber optic switching
- Built-in forced air cooling with monitoring
- Field proven performance and reliability
- BITE for superior performance
- International wide-range AC power capacity
- Intelligent front panel illuminated control keypad
- Long life high contrast VFD display
- Hinged front panel access to power supplies
- Free LabView VISA drivers
- Excellent product support and quality

**Audio & Video - Digital - RF/IF
ATE - Telemetry - Microwave**

**Universal
Switching
Corporation**

State-of-the-Art Switching Solutions
7671 North San Fernando Road
Burbank, CA 91505 USA

Call to get your
FREE catalog today!

Phn +1 818-381-5111
Fax +1 818-252-4868
Email sales@uswi.com
Web uswi.com

**Test &
MEASUREMENT
WORLD**

EDITORIAL STAFF

Chief Editor: Rick Nelson
rnelson@tmworld.com
ATE & EDA, Inspection, Failure Analysis, Wireless Test, Software, Environmental Test

Managing Editor: Deborah M. Sargent
dsargent@tmworld.com

Senior Technical Editor: Martin Rowe
mrowe@tmworld.com
Instruments, Telecom Test, Fiber-Optics, EMC Test, Data-Analysis Software

Assistant Managing Editor: Naomi Eigner Price
neprice@tmworld.com

Contributing Technical Editors:

Jon Titus, jontitus@comcast.net
Bradley J. Thompson, brad@tmworld.com
Steve Scheiber, sscheiber@aol.com
Greg Reed, tmw@reedbusiness.com
Richard A. Quinnell, richquinnell@att.net

Editorial Intern: Jessica MacNeil

Publisher: Russell E. Pratt

Senior Art Director: Judy Hunchard
Senior Art Director/Illustrator: Dan Guidera

Director of Creative Services: Norman Graf
Prepress Manager: Adam Odoardi

**Reed Business Information-US,
A Division of Reed Elsevier Inc.**

CEO: Tad Smith
President, Boston Division: Mark Finkelstein
CFO: John Poulin

HOW TO CONTACT T&MW

EDITORIAL:

225 Wyman St.
Waltham, MA 02451
Phone: 781-734-8423
Fax: 781-734-8070
E-mail: tmw@reedbusiness.com
Web: www.tmworld.com

SUBSCRIPTIONS:

For address changes, cancellations, or questions about your subscription, please contact:

Customer Service
Reed Business Information
8878 S. Barrons Blvd.
Highlands Ranch, CO 80129
Phone: 800-446-6551
Fax: 303-470-4280
E-mail: subsmail@reedbusiness.com
Web: www.getfreemag.com/tmw

CIRCULATION:

Angelique L. Vinther
303-470-4296;
angelique.vinther@reedbusiness.com

LIST RENTAL:

Julie Cronin, jcronin@dm2lists.com

GENERAL AD SALES AND MARKETING:
800-438-6597

REPRINTS:

The YGS Group
800-290-5460, ext. 149;
tandmw@theygsgroup.com

**Subscribe to T&MW online:
www.getfreemag.com/tmw**

 Reed Electronics Group

FLUKE

Assign the most common measurement tasks to the front panel setup buttons in the 8808A for consistent one touch testing.

The graphical display on the 8845A/8846A provides context sensitive menus and advanced functions like TrendPlot, histogram and statistics.

Precision, versatility and ease of use run in the family.

Fluke DMMs take you from the lab to the production line, to the service bench.

Whether it is push-button simplicity for the production line or advanced measurements for R&D, service or systems applications, the Fluke family of bench DMMs delivers precision and versatility. The Fluke 8808A, 8845A, and 8846A include all the basics—volts, ohms, and amps measurements—as well as features tailored to their specific applications:

The Fluke 8808A for manufacturing test.

- 5.5 digit resolution
- 0.01 % basic V dc accuracy
- i-Leakage low dc current range
- Push-button measurement setup

The Fluke 8845A/8846A for R&D, automated test systems and service.

- 6.5 digit resolution
- 0.0024 % V dc accuracy
- Temperature, capacitance, period, and frequency measurements
- TrendPlot™, histogram, statistics, and limit test analytics

Fluke. Keeping your world up and running.®

For more details on the Fluke family of bench DMMs go to www.fluke.com. Or contact your local Fluke representative.

Everything you need in data acquisition

No wonder Agilent's 34970A is so popular

Agilent 34970A – Data Acquisition System

- 6 1/2 digit DMM with 22-bit resolution and 0.03% accuracy
- Scanning up to 250 channels per second
- RF switching up to 2 GHz
- Free Agilent BenchLink software

With 120 channels of data logging, and enough built-in memory to hold more than a week's worth of data, you can set up your Agilent 34970A data acquisition system to take measurements while you attend to more pressing matters. Like more tests.

The 34970A allows you to continuously monitor multiple measurements whenever you're ready. Built-in signal conditioning reacts to temperature, voltage, current, resistance, frequency, and period measurements.

Find an Agilent authorized distributor for fast delivery at www.agilent.com/find/Agilent34970A and learn more about what makes the 34970A the obvious choice in data acquisition.

© Agilent Technologies, Inc. 2008

Agilent Technologies

Agilent Authorized Distributor

CONTINENTAL RESOURCES, INC.

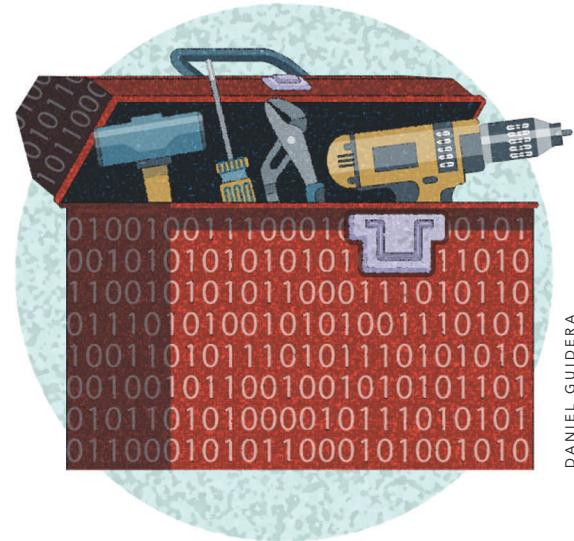
800-937-4688 Option 2 www.conres.com/test-equipment

The software is most of the work

Todd Grey is a senior test engineer at Maxim Integrated Products in Dallas, TX. Though relatively new to Maxim, Grey has been a test engineer for more than 25 years. He supports production test in initial product runs on digital devices that contain simple microprocessors and EEPROM. The devices contain a one-wire communications interface and are used in printer cartridges and in ID devices. Senior technical editor Martin Rowe spoke to Grey by telephone.

Q: What are your major responsibilities?

A: I'm responsible for production test, which consists of helping designers understand how production test differs from simulation. I'm also responsible for reducing test costs and for supporting the production floor when problems arise.


Q: What do you teach designers about production test?

A: Our production ATE [automatic test equipment] forces us to operate devices using different clock speeds than the devices see in actual use. For example, suppose a device uses three clock domains. Each domain runs separately. But we test the devices with all clock domains generated from a single source. All domain clocks are multiples of the single clock source.

Our digital IC testers operate based on time slices. Simulations generate test vectors that tell you when to strobe a device or pin, and those times don't always align with the tester's clock. We often ask designers to run a simulation under the conditions the device will encounter while undergoing a test.

Q: How do you support production?

A: I develop the software for our ATE. I also design test fixtures that let us test devices both on the wafer and assembled into packages. I spend 95% of my test-development time writing code. The test code contains the test procedures and the tester's user interface that walks a technician through each test. My job also requires that I minimize the cost of test. Our devices typically have be-

DANIEL GUIDERA

tween two and eight pins and cost between \$1 and \$2 each. To minimize test costs, we use 64-pin digital IC testers rather than 512-pin or 1024-pin testers. We also perform reduced pin-count testing on devices while they're still on the wafer. We get about 60% to 80% test coverage while devices are still on the wafer. Then, we run a final test on packaged devices.

Q: How many devices are in a production run?

A: A typical initial production run in Dallas is about 5000 pieces. Full-scale production takes place in the Philippines. I spend about half of my time on the Dallas test floor. If a production test issue arises, I typically review the test procedure.

Q: What do you consider the most significant test challenges facing test engineers today?

A: Cultural differences in people around the world are a big challenge. At my previous employer, we had designers and test development in several countries. In other countries, Americans may be perceived as "pushy," particularly when it comes to schedules. Sometimes, people will tell you that they can deliver according to your schedule because they don't want to offend you by giving an honest answer. Americans need to explain to others that we appreciate an honest answer so that we can plan accordingly and be ready on schedule. Maxim keeps all test development in the US, so we don't see these cultural differences during development. But production is in the Philippines, so we run into it there. **T&MW**

Every other month, we will publish an interview with an electronics engineer who has test, measurement, or inspection responsibilities. If you'd like to participate in a future column, contact Martin Rowe at mrowe@tmworld.com.

NOISE COM RISING ABOVE THE NOISE.

Sure, other companies talk about diodes, generators and components, but why work with an imitator when you can work with Noise Com? With 25+ years' experience and knowledge, only Noise Com can deliver total noise solutions. From custom components to complex instrumentation, you'll find the reliability and control you need, and the results you expect.

COUNT ON THE NOISE LEADER. COUNT ON NOISE COM FOR:

- Custom designs
- Complete line of noise solutions
- Analog and digital noise
- Passion for innovation
- Proven expertise

NOISE/COM

A WIRELESS TELECOM GROUP COMPANY

25 Eastmans Road, Parsippany, NJ 07054 • P: 973.386.9696 F: 973.386.9191 • www.noisecom.com

NFL awards Anritsu spectrum analyzer contract

Anritsu announced it has been awarded a contract in excess of \$500,000 by the National Football League (NFL) to supply the league with 36 MS2721B Spectrum Master handheld spectrum analyzers. The MS2721B spectrum analyzers will be used by the NFL's game day frequency coordinators (GDC) to research, troubleshoot, and analyze the RF spectrum at the league's 32 stadiums before, during, and after games.

The MS2721B units delivered to the NFL are configured with interference analysis and channel-scanner options to ensure that the GDCs efficiently coordinate the approximately 400 or more frequencies used at each stadium during a regular season NFL game. RF is used by team coaches to communicate with players on the field; by broadcast TV and radio entities; by medical teams; and by security and public-safety personnel.

"Wireless communications usage has increased greatly since the league first implemented GDCs at Super Bowl XXX," explained Jay Gerber, manager, NFL Frequency Organization Group. "We also had to consider the ever-shrinking RF spectrum as a result of digital TV and re-allocation of frequencies. Recognizing these factors, we wanted to provide our GDCs with the instruments they need to do the job effectively. The Anritsu MS2721B analyzer has proven to be a great tool to ensure they locate and resolve any RF conflict." www.us.anritsu.com.

NASA develops integrated signal and image-processing software

Engineers at NASA Glenn Research (Cleveland, OH) have developed the NDE Wave and Image Processor software and have made it available to US citizens. The software lets you perform analysis and processing operations on digitized waveforms, images, and series of images. It can extract specific information from signals and also help you predict or find defects in physical items.

As a signal processor, the software lets you analyze data in both the time and frequency domains. You can apply digital filters, calculate power, find timing delays, and remove noise from signals. As an image processor, the software lets you colorize, crop, and reorient images; denoise; enhance details; find edges of objects; and make measurements.

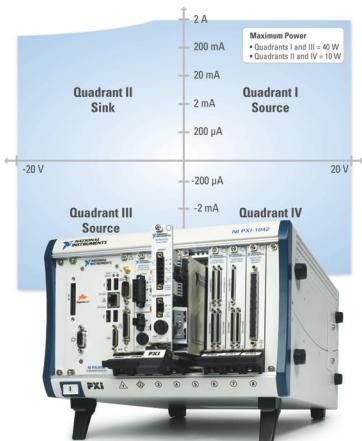
The NDE Wave and Image Processor also lets you perform wavelet analysis on signals and images. "The software brings wavelet processing into an interactive environment with its commercial-grade user interfaces," said developer Donald Roth. It comes with 40 standard wavelets that you can apply

to signals and images. Help files show you how to apply wavelets. While the software is in the public domain, it requires the National Instruments IMAQ Vision Run-Time 8.5 engine. When you download the

software, you get the run-time engine, which you can use for 30 days. After that, you must purchase a license for \$299 from NI. US citizens can obtain NDE Wave and Image Processor at technology.grc.nasa.gov/software.

Condition serial data signals

Transmission channels can easily distort 10-Gbps signals, making them unrecognizable to receivers, and transmitters often add pre-emphasis to the signals to overcome the transmission losses. The BertScope digital pre-emphasis processor (DPP) boosts or attenuates test signals at speeds from 1 Gbps to 12.5 Gbps. It attaches


between a BertScope bit-error rate (BER) tester/oscilloscope and a transmission channel. You can use the DPP to test receivers on

serial buses such as 10-Gbit Ethernet, Serial Attached SCSI (SAS), PCI Express, and DisplayPort. The DPP's input consists of a data stream from the BertScope and a clock. It combines the two and forms a data stream with an embedded clock.

The DPP conditions the amplitude of bits by as much as 1.8 V based on bit transitions. For example, the first bit in a stream may need a 1.6-V amplitude, where following bits need 800 mV. Then, when a bit changes from 0 to 1, the DPP will amplify the signal. A 1-to-0 bit change causes the DPP to decrease signal amplitude. The DPP uses three tapped FIR filters to amplify or attenuate signals. You can control the instrument through its USB interface.

Price: \$39,000. *Synthesys Research*, www.bertslope.com.

PXI Source Measure Unit

Introducing Affordable Power and Precision in PXI

NI PXI-4130 SMU Features

- 4-quadrant operation up to ± 20 V and 2 A
- 1 nA measurement resolution
- Additional +6 V utility channel
- Compact size – up to 17 SMU channels in a 19 in., 4U space

>> View product demos and download specifications at ni.com/smu

800 891 8841

**NATIONAL
INSTRUMENTS™**

©2008 National Instruments Corporation. All rights reserved. National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. 2007-9245-501-101-D

New version of VHDL underway

Accellera has announced that its members and Board of Directors have approved the VHDL 4.0 standard specification, which refines VHDL 3.0 based on feedback from trial implementations. The organization plans to release the latest version of VHDL (Very High Speed Integrated Circuit [VHSIC] Hardware Description Language) to the IEEE for balloting in 2008.

Accellera reports that VHDL 4.0 addresses more than 90 issues that were discovered during the trial implementation period for version 3.0 of VHDL (which was approved in October 2006), including enhancements to generic types, Intellectual Property (IP) protection, property specification language (PSL) integration, VHPI (VHDL application programming interface) integration, and the introduction of fixed- and floating-point types.

Jim Lewis, chair of the VHDL Analysis and Standards Group (VASG) at the

CALENDAR

APEX and IPC Printed Circuits Expo, March 29–April 3, Las Vegas, NV. Sponsored by IPC, www.goipcshows.org.

SAE World Congress, April 14–17, Detroit, MI. Sponsored by the SAE, www.sae.org.

The Vision Show, June 10–12, Boston, MA. Sponsored by the Automated Imaging Association, www.machinevisiononline.org.

See our complete calendar at www.tmworld.com/events.

IEEE, commented, "The VASG has plans in place to bring Accellera's VHDL 4.0 to IEEE for balloting as IEEE 1076-2008. We are pleased that these VHDL language extensions and productivity enhancements are being standardized for industry adoption with Accellera's support." www.accellera.org.

Mixed signals with fast updates

Agilent's MSO/DSO 7000 series moves the company into the tall and shallow oscilloscope field. The 10 models, five with 16 logic inputs, feature 12.1-in. displays in cases less than 7-in. deep. Dubbed "InfiniiVision," the oscilloscopes can update their screens at up to 100,000 times a second. The high update rate is possible because of a single field-programmable gate array (FPGA) that performs signal acquisition and processing.

The MSO/DSO 7000 oscilloscopes feature optional decode and triggers for popular communications buses such as RS-232, I²C, SPI, and CAN. Other optional applications include vector signal analysis, FPGA dynamic probing, power analysis, and segmented memory, which optimizes use of the instrument's acquisition memory.

Each model has 8 Msamples of acquisition memory for two channels. Four-channel models have 4 Msamples available for each pair of channels. Sample rates run up to 4 Gsamples/s depending on the model. Bandwidth ranges from 350 MHz to 1 GHz. You can upgrade any of the digital-signal oscilloscope (DSO) models to mixed-signal oscilloscopes (MSOs) by adding the 16 logic channels. Your total cost will be the same as a new MSO.

Base prices: two-channel, 350-MHz DSO—\$6950; four-channel MSO—\$17,900. *Agilent Technologies*, www.agilent.com.

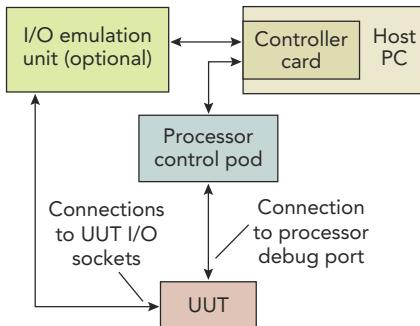
Editors' CHOICE

Take a look at tomorrow's headline. We helped write it.

As a key technology of 3GPP LTE, HSPA+, WiMAX, WLAN and other modern wireless standards, MIMO requires highly sophisticated test and measurement solutions – which must also be easy to operate in order to permit rapid progress in development. That's exactly what Rohde & Schwarz offers. Our solutions, e.g. for fading or 4x4 configurations, make the difference. See for yourself!

www.rohde-schwarz.com/ad/technologies

 ROHDE & SCHWARZ


The wall between structural and functional test

Enlightened, multidisciplinary engineers may be dismantling the oft-decried wall between design and test, but some of the bricks that made up that wall may have been reassembled into a wall between two test disciplines: structural and functional test. Glenn Woppman, president and CEO of Asset InterTech, encountered that wall when Asset teamed up with International Test Technologies (ITT) in an effort to combine JTAG and CPU emulation test technologies. Efforts to dismantle that wall ultimately helped lead to Asset's December acquisition of ITT.

In a phone interview I conducted with Woppman and Billy Fenton, Asset's chief technologist for CPU emulation and former ITT CEO, Woppman commented that boundary scan has been widely adopted in the communications, networking, and telecom space and in the defense and avionics space. He said Asset originally pursued a partnership with ITT to take advantage of ITT's strength in the computer segment. "When we got our partnership together a few years back, we saw that Billy and ITT were real strong on the Intel architectures, and his tools had and still do have automated test-program generation."

Fenton concurred that 15-year-old ITT has had its main emphasis over the last decade on Intel x86 architectures. "In the earlier years, we were very much focused on the standard PC-type space. But in the last number of years, we've been involved, although still with the Intel x86 architecture, more in the embedded space. We also did support other processor types, which would be more prevalent in the mil-aero-telecoms-type space, and we had some success in those spaces, but certainly the computation space was where we were most successful."

Woppman noted that Asset and ITT share a common background in taking a non-intrusive approach in which test takes place through a JTAG port. The difference, he said, is that while Asset has

An integrated product platform employing a converged controller card supports JTAG structural and CPU-emulation-based functional test.

taken a more structural approach, ITT comes at it from a board functional level. It was their combined efforts to address customer needs that led them to discover the structural/functional test wall.

Fortunately, the wall turned out not to be very high for high-mix, low-volume

manufacturers. When the Asset-ITT partnership proposed to engineers at those companies a combination of boundary-scan structural test and emulation functional test, Woppman said, "They tended to get it."

The wall, however, proved to be much higher for high-volume manufacturers. Woppman said that high-volume manufacturers tend to have teams dedicated to structural test only or functional test only, and, he said, if you try to introduce one test discipline to practitioners of the other, "They don't tend to get it."

He said that he expects, however, that the groups will learn to cooperate, and that ultimately Asset, ITT, their customers, and other test vendors can cooperate to develop single test stations. He said that fortunately, "The two groups who say 'I only do structural' and 'I only do functional' are beginning to talk." **T&MW**

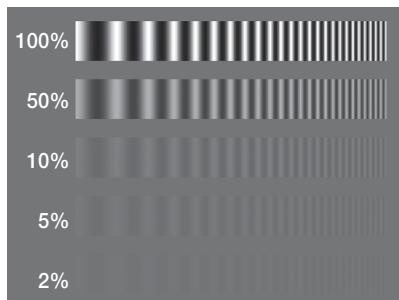
Rising Micro Electronics selects LTX system

LTX has announced that Rising Micro Electronics (RME) has selected LTX's X-Series test system for testing of its 3G cellphone TD-SCDMA (time-division synchronous-code-division multiple access) transceivers and WCDMA transmitters and receivers. The Guangzhou, China, maker of RFICs used LTX's local applications-support resources to develop test programs and to facilitate test-program transfer to RME's subcontract test providers for production testing. www.ltx.com; www.rising-ic.com.

Plexus adopts Agilent 3-D x-ray system

Agilent Technologies and Plexus have announced that Plexus, a global electronic manufacturing services provider, has selected the Agilent Medalist x6000 automated 3-D x-ray inspection system as part of its test-and-inspection strategy for new products. "The addition of 3-D x-ray completes our portfolio of production test and inspection equipment," said Gary Simpson, engineering and manufacturing manager at Plexus. "This enhancement to our existing 2-D x-ray capability provides the automated solution we need to serve our customers," he added. www.agilent.com; www.plexus.com.

Pulse-Link chooses V93000 for UWB test


Verigy has announced that Pulse-Link has selected the Verigy V93000 as the preferred test platform for its CWave UWB devices. Verigy worked with DA-Test, a semiconductor test service provider, to propose and implement the solution for Pulse-Link's CWave UWB chipset. www.da-test.com; www.pulse-link.net; www.verigy.com.

Take lens MTF into account

Many vision-system designers understand basic image-distortion effects and how to correct them, but they may need to account for the modulation transfer function (MTF) of a lens, too. The MTF describes how a lens affects contrast information and thus how "sharp" an image appears. So, if you plan to measure edge locations, part placements, or dimensions, pay attention to the MTF of the lens.

Tests that measure MTF use targets of alternating black and white lines at progressively smaller widths. Line "frequencies" may vary from a few lines per millimeter to hundreds of lines per millimeter. A perfect lens

These bands show how five MTF values affect images of the same black-to-white (b/w) pattern. Many tests use alternating b/w bars, but this test used b/w patterns created by a swept-sine function. Courtesy of Norman Koren.

would pass this spatial-frequency information to an image sensor without distorting the contrast information. Thus, you would always measure an MTF of 100%, or a full-scale contrast difference between black and white lines.

Unfortunately, no one manufactures perfect lenses, so all images show some gray at a black-white transition. But wide lines still provide an MTF of 100% because the centers of the alternating lines appear pure black or pure white. As the lines get narrower, images lose contrast, and the black and white lines blur and appear grayer. Still nar-

rower black and white lines appear all gray, and you can no longer distinguish between them. Because no contrast information gets to the image sensor, the MTF now equals 0%. As an analogy, think of a swept square wave that passes through a low-pass filter. At low frequencies, the signal looks pretty good, but at high frequencies, the signal disappears.

Some lens suppliers provide plots of MTF values. A typical plot shows the MTF vs. spatial frequency at the center of an image (on axis). Some plots may show the relationship between the MTF and the distance from the lens' central axis. The MTF decreases as the off-axis distance increases. The lens aperture setting—its f stop—can affect the MTF, so you need to learn the test conditions that were used to create the MTF charts. When you look at MTF plots, make sure you know the units for the lines, or spatial-frequency, axis. Vendors will specify lines per millimeter or line-pairs per millimeter. Ten line pairs equals 20 lines. If you cannot obtain an MTF plot, run a program such as Imatest (www.imatest.com) that will perform MTF and many other lens and image tests.

According to the Luminous Landscape photography Web site (see "For Further Reading"), the larger the MTF value at 20 lines/mm, the better the contrast-reproduction capability of a lens. The larger the MTF value at 60 lines/mm, the better the lens' resolving power and subjective sharpness. Generally, a lens with an MTF above 80% at 20 lines/mm will produce an excellent image. Consider a lens with an MTF between 79% and 60% as just satisfactory. **T&MW**

FOR FURTHER READING

Koren, Norman, "Introduction to resolution and MTF curves." www.normankoren.com/Tutorials/MTF.html.
"Understanding MTF." luminous-landscape.com/tutorials/understanding-series/understanding-mtf.shtml.

IR light source covers broad spectrum

The MHAB-100 incandescent infrared light source from Moritex offers a broad light spectrum unachievable with LED light sources. The 100-W halogen light source delivers illuminance of up to 30,000 lux across the spectral region of 1000 nm to 1800 nm. The infrared light emitted by the MHAB-100 penetrates into or through materials, facilitating applications such as wafer alignment, MEMS inspection, solar panel inspection, and semiconductor device coaxial transmission observation. www.moritex.com.

Vision software available in trial version

Cognex is offering a free trial version of its VisionPro 5.0 machine-vision software, which the company says can be used to acquire data from any camera, including GigE Vision, FireWire, Camera Link, and high-speed analog models. The software's tools gauge, guide, identify, and inspect parts with repeatable results, despite variations in part appearance due to the manufacturing process. www.cognex.com/software.

Cyros named AIA president

The Automated Imaging Association board of directors has elected Michael Cyros as its president. He succeeds John Merva, who served three years as president. Cyros, president of the North American subsidiary of Allied Vision Technologies, has served two terms on the AIA board. www.machinevisiononline.org.

WEBCAST

Oscilloscopes aid embedded designs

"Small adjustments in microcontroller firmware can produce significant improvements in embedded-system performance," says David Saar, president of Saar Associates, in the Webcast "Embedded design techniques for optimizing control parameters." In the Webcast, sponsored by Tektronix in conjunction with *Test & Measurement World* and *EDN* and presented live January 23, Saar describes how to use a mixed-signal oscilloscope to select the right values for parameters such as gains, offsets, delays, hysteresis values, and pulse-width-modulation (PWM) parameters in embedded systems. In particular, Saar notes that a mixed-signal scope with deep memory can often gather necessary measurement data in a single acquisition.

Saar provides specific application examples, including that of a high-brightness LED power system (**figure**) that controls brightness by means of a microcontroller-based PWM controller. He describes how to use a mixed-signal

scope to monitor the gate of the controller's power transistor as well as analog levels such as power-transistor drain voltage, LED voltage, and LED current. Saar also describes how to correlate

stepper-motor controller, for which Saar explains how to determine optimum step delays for normal operation and for operation near the end of battery life. He also presents an ultrasonic

An embedded controller in an LED power system yields its operational secrets to a mixed-signal oscilloscope.

microcontroller program execution with measured results by inserting a temporary marker in the microcontroller's software. He further describes how to use the observed data to choose an optimum hysteresis level that minimizes ripple.

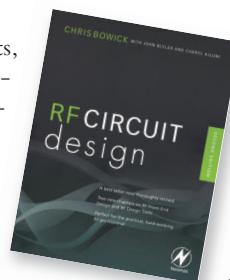
Other examples presented in the Webcast include a battery-powered

range detector, for which he shows how to determine optimum gain settings and optimum transmitter voltage and frequency.

To see detailed information on these three examples, you can view the archived Webcast at www.tmworld.com/webcasts.

Rick Nelson, Chief Editor

BOOK REVIEW


RF book's new edition adds EDA tools, skips test

RF Circuit Design, 2nd ed., by Chris Bowick with John Blyler and Cheryl Ajluni, Newnes (www.newnespress.com), 2008. 256 pages. \$44.95.

In *RF Circuit Design, 2nd ed.*, John Blyler and Cheryl Ajluni have updated Chris Bowick's 1982 edition to accommodate changes that have occurred over the last 26 years. Part handbook and part textbook, the book introduces basic concepts but quickly relates them to real-world components like thin-film resistors, chip and ceramic capacitors, chip inductors, and toroidal core inductors. Sample data sheets throughout the book keep the theory grounded in real-world engineering concerns. Topics covered

include resonant circuits, filters, impedance matching, small-signal and power-amplifier design, and RF front-end design.

A significant addition to the second edition is a chapter on RF design tools that covers schematic capture, place and route, simulation, and verification. The chapter describes various flavors of hardware description languages, including VHDL-RF/MW—the HDL exten-

sion that supports RF and microwave designs with extensions that support finite-element modeling (FEM), frequency-domain modeling, nonlumped circuit elements, and parasitics.

The RF design tools chapter provides design examples using tools like the Mathworks' Matlab/RF Toolbox, Agilent Technologies' Advanced Design System (ADS), Mentor Graphics' Board Station RE placement-and-routing tool and Eldo RF

Measurement Application?

We Have Answers

simulator, Cadence Design Systems' RF Design Methodology kit, FTL Systems' Auriga modeling and verification tool, and Applied Wave Research's Visual System Simulator (VSS). In addition, the chapter describes the RF design flow at foundry UMC, presents RFIC simulation examples involving a WLAN receiver and a downconverter, and presents a case study of a system-level transceiver design.

One thing this new edition doesn't cover is the last 26 years' worth of innovations in the RF and microwave instrumentation that you'll need to take advantage of to make sure your RF designs work. For that, you'll need to maintain your subscription to *Test & Measurement World*. (Disclosure: The book's publisher is owned by *T&MW*'s parent company.)

Rick Nelson, Chief Editor

COMPLIANCE

IPC prefers devil it doesn't know

IPC in January urged the European Commission not to expand the scope of its RoHS directive. In fact, the organization went so far as to say that "substance restrictions beyond RoHS would more appropriately be addressed under the current REACH [see "The devil in the acronyms"] directive to avoid unneces-

REACH over RoHS akin to dealing with the devil....Or has IPC, in advocating regulation under REACH over RoHS, failed to heed the old adage, 'better the devil you know than the devil you don't?"

Abrams acknowledges that REACH is big, complex, and potentially costly to implement, addressing as it does SVHCs as well as CMR, PBT, and vPvB substances. But, she writes, "perhaps there is something to be said for complexity. After all, the RoHS regulation was brief and to the point. So brief that it left many wondering what it required and how to implement it.... REACH, on the other hand, spells everything out. We may not like the process, but at least there is a process."

She concludes, "Clearly, REACH is not a model regulation that IPC would like to see replicated. But,...substances in the REACH process will not be banned without careful consideration of the full societal impact, which is more than can be said of RoHS."

See the online version of this article at www.tmworld.com/2008_03 for links to Abram's EDN.com post as well as to her January 10 letter to the European Commission.

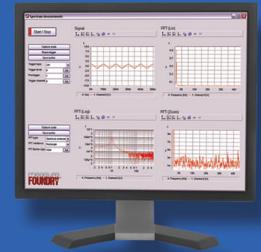
Rick Nelson, Chief Editor

The devil in the acronyms

CMR: carcinogenic, mutagenic, or reprotoxic (toxic to reproduction)

PBT: persistent, bioaccumulative, and toxic

REACH: registration, evaluation, and authorization of chemicals

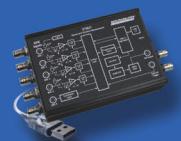

RoHS: restriction on hazardous substances

SVHC: substance of very high concern

vPvB: very persistent and very bioaccumulative

sary confusion and regulatory overlaps," as Fern Abrams, director of government relations and environmental policy for the IPC, put it in a January 10 letter to the Commission.

In a February 5 posting at EDN.com, Abrams elaborates on IPC's position, but first wonders, "Is advocating


Measure Foundry™
Test & Measurement Software

TEMPpoint™
Temperature Measurement Instrument

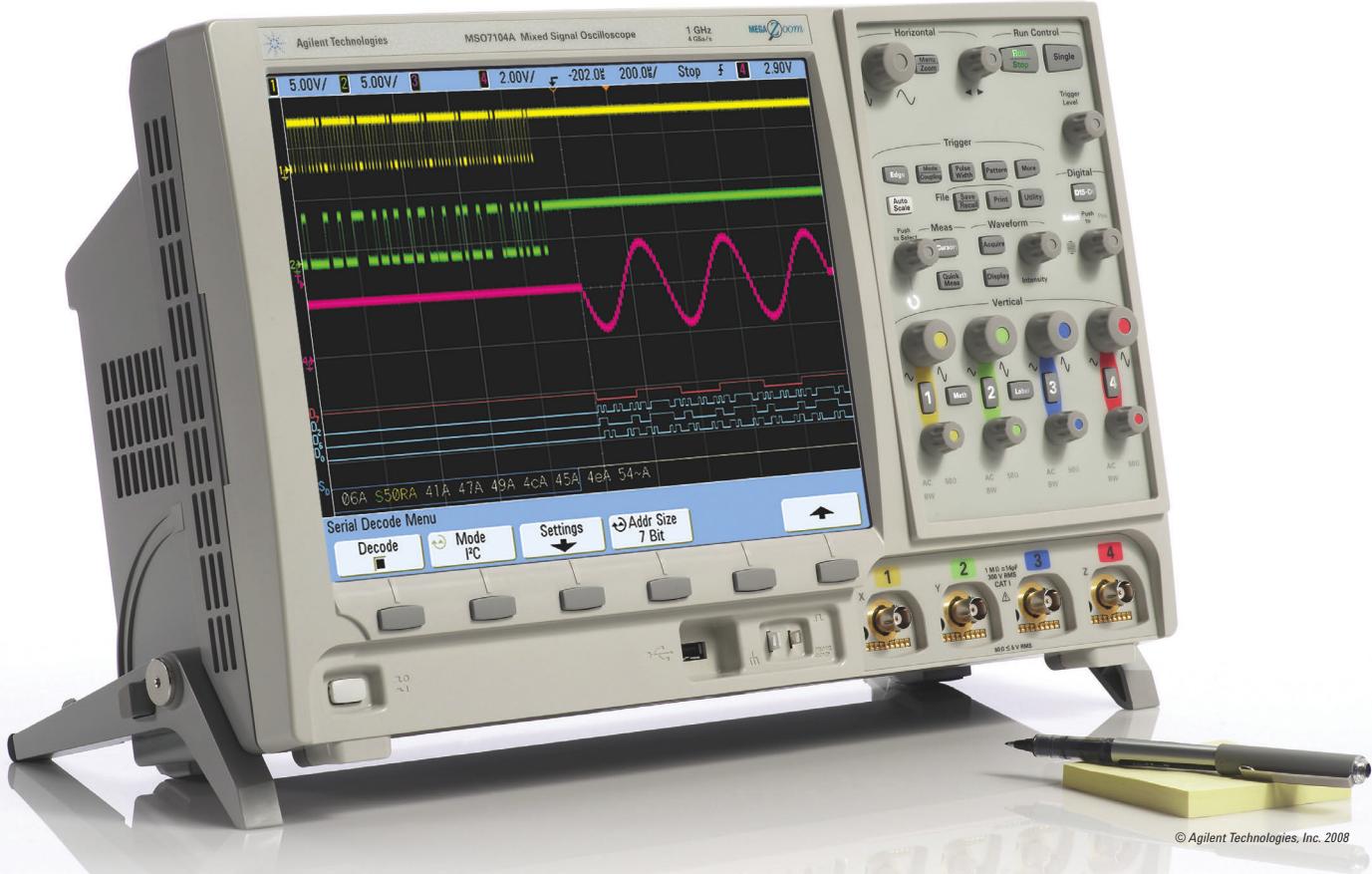
ECONseries
Starting at \$149

DT9837
Sound & Vibration Module

DT9832
2MHz per Channel

DT9841
Real-Time DSP

We offer a range of USB data acquisition modules, each supported by our patented Measure Foundry application software.


DATA TRANSLATION®

www.datatranslation.com

800-525-8528

Biggest Screen. Best signal visibility.

Introducing Agilent's newest oscilloscope.

© Agilent Technologies, Inc. 2008

Agilent InfiniiVision 7000 Series oscilloscopes

Bandwidth	350 MHz, 500 MHz, 1 GHz
Channels	2 or 4 analog +16 digital on MSOs
Waveform update rate	Up to 100,000 waveforms per second
Connectivity	USB, LAN, XGA-out
Display	12.1" XGA LCD
Footprint	6.5" deep, 13 lbs.
Applications	I2C, SPI, CAN/LIN/FlexRay, RS-232/UART, Xilinx and Altera FPGA, Segmented Memory, Vector Signal Analysis, Offline PC-based analysis of acquired data, Power

5 new digital scope models and 5 new mixed-signal scope models

u.s. 1-800-829-4444

canada 1-877-894-4414

www.agilent.com/find/7000appnote

More than a decade ago Agilent introduced the industry's first mixed signal oscilloscope. Now you can experience 3rd generation MSO technology and the industry's fastest DSO update rates with the new InfiniiVision 7000 Series.

- 1. Industry's biggest (12.1") screen** so you see analog, digital and serial signals better – in one instrument.
- 2. Fastest uncompromised update rate** shows you critical signal detail and infrequent events that other scopes miss.
- 3. Industry's only hardware accelerated serial decode** gives you faster insight.

See an online demo and get a free app note at
www.agilent.com/find/7000appnote

Agilent Technologies

PROJECT PROFILE

RF TEST

Calibrated radio

DEVICE UNDER TEST

Radio transmitter and receiver cards used in wireless communications. The cards, which are placed in an antenna module that mounts on towers, operate at frequencies from 6 GHz to 11 GHz.

THE CHALLENGE

Calibrate transmitters and receivers over three frequency bands to ensure the cards have the correct output power with minimal spurious noise and receive level. Conduct exhaustive performance tests.

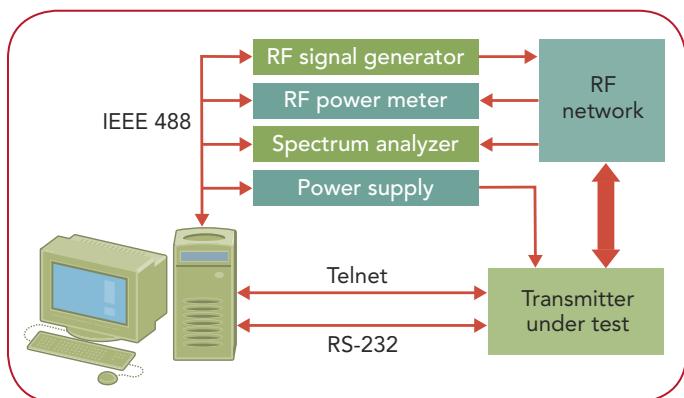
THE TOOLS

- Agilent Technologies: digital multimeter, DC power supply, RF spectrum analyzer, RF signal generator. www.tm.agilent.com.
- Averna: test-management software. www.proligent.com.
- Marconi (now Aeroflex): RF signal generator. www.aeroflex.com.
- National Instruments: graphical programming language, test executive. www.ni.com.
- Rohde & Schwarz: RF power meter. www.rohde-schwarz.com.
- Xantrex Technology: DC power supply. www.xantrex.com.

PROJECT DESCRIPTION

A manufacturer of transmitters and receivers of digitally modulated signals needed to reduce test time because the cards require calibration during production test. Test-system integrator Averna (www.averna.com) built eight production test systems for the cards.

RF transmitters require calibration for them to produce specified output power across their frequency range. Prior to implementation of the new test systems, a technician would need 4 to 5 hr to calibrate a transmitter/receiver pair. Now, the calibration and test time is about 20 min.


The test stations calibrate transmitter cards for gain, output power, modulation, offset, and balance over the 6–7 GHz, 7–8 GHz, and 10–11 GHz bands. Transmitter frequency and power level is set in software and sent to the transmitter through a Telnet interface.

To calibrate the transmitter's RF power, the software sets the card's signal attenuator to nominal. An RF power meter (**figure**) measures the output power. Based on the measurement, the software adjusts the transmitter's power by changing the output of a digital-to-analog converter (DAC) that drives the transmitter's power amplifier until the power is within tolerance. The DAC's output value must change with frequency to compensate for frequency-dependent losses. The test repeats across the specified frequency band until the output power is within tolerance across the band. (An RF signal generator provides a 19.44-MHz reference frequency.)

The system adjusts the transmitter's gain by adjusting the attenuator—this adjustment prevents overloading of the power amplifier. The final calibration adjusts the transmitter's phase imbalance to minimize spurious noise. Gain and phase-imbalance calibrations minimize signal output errors. The test system stores all settings in the transmitter's flash memory.

The card's receiver needs attenuator calibration, RF and IF filter calibration, and received signal strength indication (RSSI) testing. An RF synthesizer and I/Q modulator provide the input signals to the receiver. Filter calibration ensures that the maximum signal strength reaches the receiver's detector circuits. The software polls each unit under test (UUT) to get RSSI data on received signal power. (The online version of this article contains a diagram of the receiver test station and the software architecture: www.tmworld.com/2008_03.)

A graphical programming language handles all communication among the host PC, the instruments, and the UUT. A test executive lets technicians select tests, and it provides a

An automated test system calibrates RF transmitters used in wireless communications.

user interface. A test-management platform works with the test executive to retrieve test results and make them available to engineers and to management.

LESSONS LEARNED

Averna software engineer Alex Pelland likes the Telnet interface because it provides standardized handshaking with the UUT that's built into the protocol. He also prefers a structured approach to software development. "The architecture accelerates and simplifies the introduction of new models or options," he said. "We have implemented generic drivers and we can set each driver to configure the test equipment for a specific UUT. We tried to avoid hardcoded parameters wherever possible."

Martin Rowe, Senior Technical Editor

PROTECTION *at* FULL POWER

To ensure their components protect your circuits, Littelfuse engineers may damage or destroy their parts, sometimes in spectacular fashion.

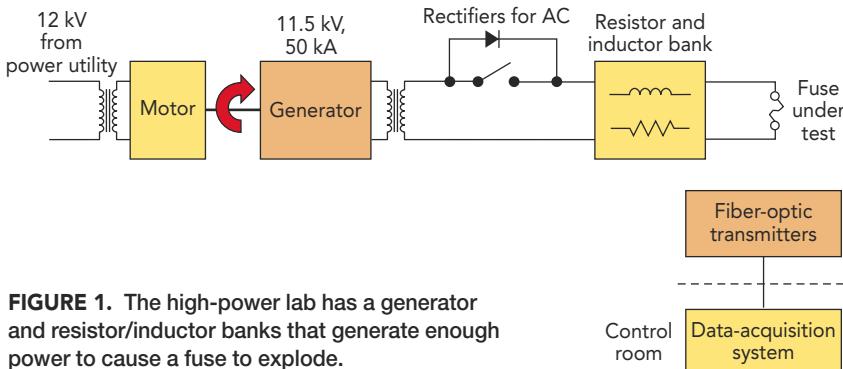
BY MARTIN ROWE, SENIOR TECHNICAL EDITOR

LANE CAMERON

DES PLAINES, IL—Protecting circuits may not be at the forefront of every design engineer's mind, but it is paramount in the minds of Littelfuse engineers. The 80-year-old company manufactures fuses, gas-plasma arresters (also called gas-plasma tubes or GDTs), varistors, thyristors, electrostatic discharge (ESD) suppressors, positive temperature coefficient (PTC) devices, and diodes that protect sensitive electronic circuits, building wiring, and everything in between. While Littelfuse has some 27 facilities worldwide, product evaluations take place at technical centers in Des Plaines; Irving, TX; and Wuxi, China. At these facilities, engineers subject components to excessive current, lightning, ESD, overvoltage, and extreme temperatures. The electrical stresses range from a few volts and amperes to the thousands of both, depending on a product's specifications.

Global lab manager Todd Marcucci, based in the Irving facility, was on hand for my Des Plaines visit. "Our labs support product development and customers in the company's three main business units: electronic, automotive, and industrial-power applications," he explained. "In addition, we help customers achieve standards certifications and other design requirements of their products." Marcucci oversees the operations at all three technical centers.

In Irving, engineers who test the company's semiconductor products perform environmental tests, semiconductor parametric tests, ESD tests, and lightning tests. They also measure high-frequency characteristics such as S-parameters, bit-error rate, capacitance, and impedance, and they perform time-domain reflectometry. In China, engineers perform semi-


 Todd Marcucci oversees test labs in Illinois, Texas, and China.

conductor parametric testing, environmental testing, ESD testing, and failure analysis.

Heavy duty

The Des Plaines facility houses a high-power lab, a medium-power lab, and a product-evaluation lab in an area covering 6000 ft². The high-power lab boasts its own electrical generator that can deliver more than 11,500 V and 50,000 A to large fuses and other devices. Because the devices may explode when subjected to that much energy, they reside in a separate room during the tests to keep engineers and technicians safe.

Figure 1 shows a simplified diagram of the high-power lab, which was built in 1984. The electric utility company supplies 12,000 V that drive a motor, which turns a generator that electrically isolates the system from the power grid for safety. Another room houses the secondary transformer and a resistor/inductor bank that lets engineers create the desired voltage, current, and power factor. The bank can deliver more than 1000 kVA to the fuse under test. A rectifier converts the AC power to DC when needed.

FIGURE 1. The high-power lab has a generator and resistor/inductor banks that generate enough power to cause a fuse to explode.

Engineers, including power lab supervisor Roberto Marquez, perform overload tests and short-circuit tests on fuses. After selecting the desired resistors and inductors for a test circuit, Marquez and his team of engineers and technicians will perform an open-circuit test to verify that the device under test (DUT) will receive the correct voltage. Fiber-optic transmitters from LeCroy produce light with an intensity that is proportional to voltage, and they deliver that signal to a Nicolet data-acquisition system in the

Roberto Marquez supervises engineers and technicians in the high-power lab.

control room. From there, digitized signals go to computers for waveform analysis and storage.

Next, technicians install a bus bar across the test circuit's terminals and measure the current by measuring the voltage across a calibrated shunt. Fiber-optic transmitters also send a signal proportional to current to the control room. After removing the bus bar, technicians install the fuse under test onto the circuit. Switches controlled by operator

starts to increase, indicating that the fuse is starting to open, we apply the fuse's rated voltage across it," said Marquez. "A switch disconnects the current from the low-voltage current source and connects the high voltage, high current from the generator to the fuse under test." The amount of current through the fuse is the same both before and after the switchover, but the voltage greatly increases.

To give me an idea of how much energy is involved, a technician connected a 10-gauge solid wire across the test terminals and applied 32,000 A at 600 V through the wire. The result: The wire vaporized with an explosion followed by a puff of smoke. (You can watch a 5-s video of this event in the online version of this article at www.tmworld.com/2008_03.)

The high-power lab houses a surge generator that emulates lightning surges on AC mains lines and telephone lines. A Hipotronics high-voltage power supply generates 100 kV at 50 mA DC. It also generates pulses of 100 kA at 75 kV. The 100-kA, 75-kV pulse has a rise time of 8 μ s and a fall time of 20 μ s (from 10% to 90% of peak current). The power supply contains a bank of twenty-eight 1- μ F charging capacitors, each the size of a cinder block, that discharge through a switch. A grounded silver ball sits atop each capacitor to prevent arcing among the capacitors at the high voltages. A 1- Ω resistor, 18 in. long, completes the circuit and produces the desired wave shape.

"We calibrate the surge tester by measuring the open-circuit voltage and

buttons on a panel in the control room deliver current to the fuse.

The engineers perform an overload test by first running current through the fuse under test for up to several minutes. This current is supplied from another source, because using the generator will cause the resistors and inductors in the bank to overheat and become damaged.

For this test, engineers apply 200% of rated current through the fuse, but at a low voltage. "We monitor for voltage across the fuse, and when the voltage

LANE CAMERON

ADVANCED SOLUTIONS

EASY IMPLEMENTATION

SOLID STATE SWITCHING NETWORKS

- > HF, IF, VHF, UHF, L-BAND, S-BAND, C-BAND

ELECTROMECHANICAL SWITCHING NETWORKS

- > DC to 40 GHz

RF SWITCHING CHARACTERISTICS

- > Excellent Signal Linearity and Isolations
- > Low Insertion Loss
- > High 1 dB Compression Point
- > Great IP2/IP3 Performance

... SOME MORE FEATURES

- > Software Control using Labview
- > Remote Access Control and System Monitoring
- > Interfaces: Ethernet, CANBus, GPIB, RS-232, RS-485
- > Microcontroller or Windows based Controller
- > Protocols: TCP/IP, SNMP, LXI

WE ALSO OFFER ...

- > Full Integration and Custom Solutions
- > Sophisticated Systems for both ATE and Communication Industries
- > Training and Support

Dow-Key® Microwave
CORPORATION

A DOVER COMPANY

(805) 650-0260 askdk@dowkey.com www.dowkey.com

short-circuit current for each discharge," said Marcucci. For the short-circuit current measurements, engineers measure current with a current probe from Pearson Electronics that connects to a Tektronix oscilloscope.

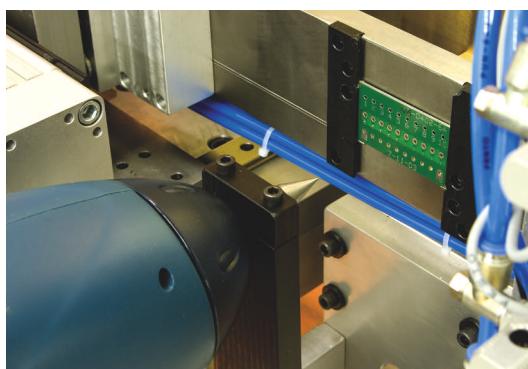
In the medium-power lab, engineers test devices such as automotive fuses, GDTs, varistors, PTCs, and electronic fuses. "Medium power" at Littelfuse is high power at most companies. Engineers can test devices with up to 500 A at voltages from 10 V to 480 V. At 60 A, engineers can apply up to 600 V to a device. To test the devices, engineers mount them on printed-circuit boards (PCBs) that connect the devices in series. A power supply then provides power to the

FIGURE 2. Automotive fuses, such as these in blade packages, undergo life tests that last 100 hr.

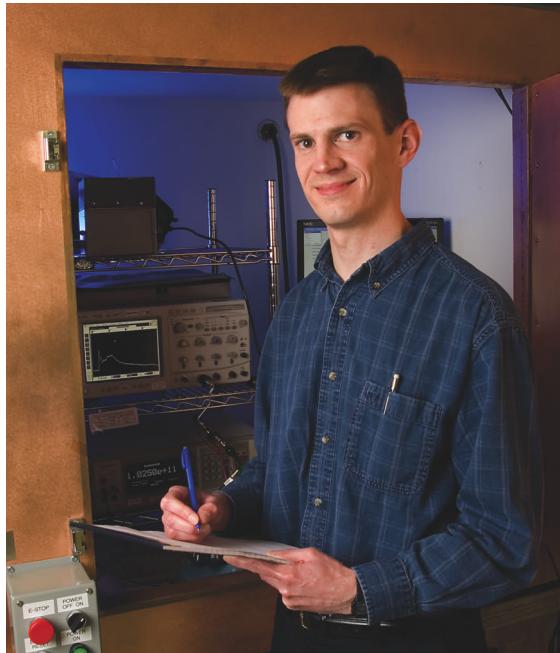
devices. Parts that don't mount on PCBs may be connected with wires.

Because of the power levels generated in the high-power and medium-power labs, Littelfuse engineers have designed the facilities for safe operation. Relays isolate the power until engineers and technicians can safely operate the equipment. "We have interlocks on everything," said Marcucci. For example, DUTs are tested in chambers, and interlocks prevent power from being applied to a part while a chamber door is open.

High-power and medium-power tests let engineers evaluate products for their circuit-protection abilities, which relates to product safety. Many Littelfuse customers require this testing to obtain safety certifications from Underwriters Laboratories (UL). UL engineers often come to Littelfuse to witness tests. "We have a very good relationship with UL," said product-evaluation lab


manager Dave Shuemaker. "UL is here at least once a week," added Marquez.

UL engineers may also witness tests in the product-evaluation lab, where engineers perform numerous electrical and environmental tests. Constant-current DC power supplies (built in-house) provide current ranging from 2 A at 150 V to 1000 A at 20 V. Engineers use these supplies to run overload (opening time) tests, current-carrying capacity (life) tests, temperature-rise tests, and voltage-drop tests. "Typically, half of the products in an evaluation lot receive destructive testing, while the other half receive evaluation testing," said Shuemaker. "Design engineers come to the lab after they've completed initial testing."


Product evaluations

To run a life test on an automotive fuse (Figure 2), a technician will connect 12 or 24 parts in series, then pump 110% of the fuse's rated current through the device. (The customer specifies if the test should use 12 or 24 fuses.) This test will run for 100 hr, after which engineers will evaluate the fuses for resistance. On some electronic fuses, engineers will run long-term reliability tests at 75% of rated current for one year.

In a temperature-rise test, engineers test fuses by running them at 100% of

FIGURE 3. An ESD simulator tests ESD suppressors in an automated tester that moves the parts into place.

Dave Shuemaker manages engineers and technicians in the product-evaluation lab, where parts undergo a wide range of functional and environmental tests.

their rated current. Thermocouples mounted to each device connect to an Agilent Technologies data-acquisition system, which records the temperatures.

Environmental chambers from Thermotron, Blue M, Webber, and Espec let engineers run elevated ambient-life tests at temperatures ranging from -73°C to 343°C and let them perform humidity, moisture-resistance, accelerated aging, and whisker tests (for lead-free components) on devices from 10% RH to 98% RH at temperatures up to 180°C. The engineers also use the chambers to perform thermal-shock tests (per MIL-STD-202) from -70°C to 200°C.

"A typical thermal-shock test is -65°C to 125°C," said Shuemaker. "We typically run that test for 15- or 30-minute cycles, while changing the device's temperature in just a few seconds. Dampers in the chamber alternately blow hot and cold air on the devices."

Littelfuse also has thermal chambers that move devices among room-temperature, hot, and cold zones. For semiconductor devices, the company's engineers may simply alternate parts between baths of ice water and boiling water.

(continued)

We're Driven!

The same things that drive you, drive us. We're passionate about finding new ways to help our customers be more productive. To make testing faster, easier, and more accurate. To make equipment more reliable and more cost-effective. To be ready for the future, today.

Building Blocks! That's The Idea Behind Our Subampability™ Concept!
We're building amplifiers that can grow as your needs change. When you need a more powerful amp, you simply add the power instead of tossing out the old amplifier. Smart!

Survival Of The Fittest.
AR amps stand up to the toughest conditions with infinite VSWR tolerance. You get every watt of power, every time.

Powerhouse!
When it comes to power and reliability, those who know come to AR. For amplifiers like the 10000A250A, with 10,000 watts of power, 6:1 VSWR tolerance, and a frequency range of 100 kHz - 250 MHz.

Safe Bet!
AR's highly-advanced Starprobe® laser probes have 3 levels of safety to protect your equipment and the reliability of your data. AR battery and laser probes cover 5 kHz to 60 GHz.

Radiant Arrows.
Our unique "bent element" Radiant Arrows are about 60% smaller than standard log periodic antennas. They produce high fields even in the toughest applications.

Your Test Is Only As Good As The Sum Of Its Parts.
It doesn't make sense to compromise the quality of AR amplifiers with inferior parts. AR offers accessories that are power and frequency matched to our amps.

WOW!
AR Systems like the AS40000 Radiated Immunity Test System can perform entire tests with just the press of a few buttons ... and with unmatched accuracy and reliability.

Adaptable, Constantly Changing.
The TGAR system, for automotive transient immunity testing, is so flexible it can handle most existing specs ... and most new ones as they emerge.

Our Conducted Immunity Test Systems Stand Alone!

The CI self-contained RF Conducted Immunity

Test Systems have no equals. For ease of use, accuracy, flexibility, reliability, or any features that really matter. Testing to CE, MIL and Auto Standards.

**We've Seen The Future.
And We're In It.**

No one knows exactly what's next in EMC and Wireless testing. But AR will always be several steps ahead, with the amps and accessories that meet the changing needs.

Get Ready For The Next Wave In EMI Receivers.
The CER2018 Receiver is a complete EMI test solution with continuous coverage from 20 Hz to 18 GHz and expendability to 110 GHz. To ensure accuracy, it self-calibrates on demand at every frequency scan.

AR Modular RF Is A Leading Supplier Of Booster Amplifiers For Tactical Military Radios.
Our battle-tested booster amplifiers cover the broadest frequencies and wave forms and are compatible with virtually every transceiver. We're also supplying some of the most high efficiency modules for jamming applications.

A Wide Range of Modules and Amplifier Systems.
AR Modular RF not only offers modules and rack mounted amplifiers from 10 kHz to 6 GHz (with power that goes from watts to kilowatts), we also provide customer-specific designs and modifications of our products to meet the most demanding requirements.

One Company, Infinite Solutions

rf/microwave instrumentation • modular rf • receiver systems • ar europe

USA 215-723-8181. For an applications engineer, call 800-933-8181.

In Europe, call ar emv United Kingdom 441-908-282766 • ar emv France 33-1-47-91-75-30 • ar emv Germany 89-614-1710 • ar emv Netherlands 31-172-423-000

Copyright© 2008 AR. The orange stripe on AR products is Reg. U.S. Pat. & TM. Off.

Quality Hipot Testers!

for use in production and inspection lines

\$750

TOS8030

\$1,050

TOS8040

\$1,950

TOS8830

TOS8830/8040/8030

The model TOS8830, TOS8040, TOS8030 are hipot and insulation resistance testers developed by KIKUSUI, an international brand in the field of electrical safety testers, and are designed specifically for use in production and inspection lines in factories. While retaining the high levels of quality and reliability inherent to our products, these testers are geared to provide what manufacturers want - compact, light weight, and reasonable price.

Model TOS8830

Withstanding voltage:

4 kVAC/100 mA,

Insulation resistance:

500 V/999.9MΩ

Withstanding voltage/insulation resistance tests in one model supporting the standard test

Model TOS8040

Withstanding voltage:

4 kVAC/100 mA

Withstanding voltage tester supporting standard tests

Model TOS8030

Withstanding voltage:

3 kVAC/10 mA

Compact model supporting the simplified test

FAILURE ANALYSIS

FIGURE 4. A shielded RF enclosure prevents electromagnetic (EM) fields generated by the ESD simulator from affecting test equipment.

Shuemaker mentioned that a military customer recently requested that devices be monitored for continuity during a thermal-shock test. For this test, the chamber that uses dampers to blow in hot or cold air works best because the parts don't move. "If continuity breaks," he said, "we stop the test. Its purpose is to prove that our parts don't have cold solder joints." An Agilent data-acquisition system measures resistance of the DUTs while they are in the chamber.

A technician connects all of the 144 fuses in a series using fixtures that hold up to 10 parts. A digital multimeter (DMM) measures the continuity of each fixture. "At first, the customer wanted us to monitor every part," said Shuemaker, "but that takes a technician a long time to connect wire to the parts."

After Littelfuse gained the confidence of the customer, engineers changed to monitoring each fixture as a whole rather than wiring every part. Shuemaker noted that after six months of testing the parts, only one loss of continuity was detected, and it was because of a wire break in the test fixture. No parts have failed.

Because so many electronic components are now made with lead-free solder, Littelfuse engineers must evaluate the effects of lead-free solder reflow techniques on their components. Reflow ovens in Des Plaines subject PCBs containing Littelfuse components to air temperatures up to 310°C (board temperature to 265°C).

Littelfuse components must also withstand shock and vibration tests. The company's engineers subject components to half-sine and sawtooth vibration

waveforms and 100-Hz sinusoidal vibration per MIL-STD-202. Shock tests can inflict up to 1500 g of force on a part.

Electrical stress

The Littelfuse engineers also test components for electrical surge and ESD. Components designed to protect AC mains lines and telecom products must pass surge tests. A lightning test system from Thermo Keytek subjects devices to waveforms required by standards such as FCC 47 Part 68 and Telcordia GR 1089 (for telecom circuit protection) and IEC 61000-4-5 (surge immunity for everything else).

Littelfuse also manufactures ESD suppressors in surface-mount packages with sizes as small as 0.04x0.02 in. (called "0402" packages). The product-evaluation lab contains a room where engineers such as Pete Pytlak evaluate ESD suppressors to see how well they withstand repeated pulses.

Pytlak developed an automated ESD tester that consists of a Schaffner ESD simulator. Using air discharges, the automated tester tests devices mounted on PCBs, up to 10 parts per board. The system can hold as many as 24 loaded boards. A motorized handler aligns each device to the tip of the ESD simulator where pneumatics move the ESD simulator tip to the device (Figure 3). The online version of this article contains a link to a video of the ESD tester in operation: www.tmworld.com/2008_03.

Each device may be subjected to up to 1000 pulses before the ESD simulator retracts and the handler positions the next device for a test. At 1000 pulses per

Same features, half the price?

It's true—just visit our website and see for yourself that our data acquisition prices are lower.

LOOK INTO MEASUREMENT COMPUTING—

we're the acknowledged world leader in low-cost data acquisition hardware and software. Our prices *are* better, as seen in the example at right—a savings of almost \$200 per channel. Our complete selection of robust, reliable products is backed by lifetime and money-back limited warranties, and a unique Harsh Environment Program. We also carry a wide array of data acquisition software solutions to match your application and level of expertise. And, as our customer, you'll always have phone access to an experienced engineer.

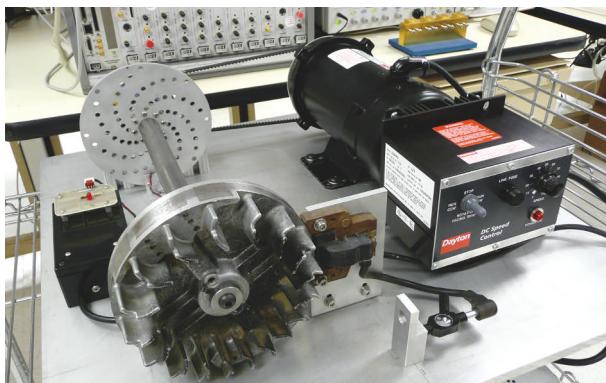
Once you've learned about us and our prices, you can stop paying too much for DAQ.

LOW PRICES • LIVE SUPPORT • 30-DAY MONEY-BACK GUARANTEE
LIMITED LIFETIME WARRANTIES • HARSH ENVIRONMENT PROGRAM

Here's just one example.

Product	Brand "A"	Measurement Computing USB-1608HS
Measurement Type	analog input (simultaneous)	analog input (simultaneous)
Number of Channels	6 single-ended	8 differential/ 8 single-ended
Throughput	225 kHz	250 kHz
Resolution (bits)	16	16
Voltage Ranges	±5V, ±10V	±10V, ±5V, ±2V, ±1V
Unit Price	\$2,095	\$1,199
Price per Channel	\$349.16	\$149.88

Compare us to the others. See all our products at mccdaq.com.


Call us today at (508) 946-5100

A complete selection of low-cost DAQ hardware—and software for every skill set

device, the system takes 5 hr to test 10 devices. Testing 24 boards worth of parts can take a week.

The ESD test system also consists of a 4-GHz Agilent oscilloscope and a QuadTech megohmmeter/insulation-resistance tester. The oscilloscope monitors the ESD waveform while the megohmmeter measures the DUT's resistance after the ESD simulator subjects the DUT to pulses. Resistance data on each part is stored in a SQL database. RF switches connect the 100X oscilloscope probes to the DUT.

Both the oscilloscope and megohmmeter reside in a Lindgren RF enclosure that acts as a Faraday cage (**Figure 4**), shielding test equipment from the broadband electromagnetic waves produced by the ESD pulses. "I don't understand how anyone can do ESD testing without a Faraday cage," commented Pytlak. "The pulses create EM fields that can affect the

FIGURE 5. A custom tester simulates the rotations of a small engine for testing SCRs and thyristors.

instruments. You can see the signal when you open the chamber door."

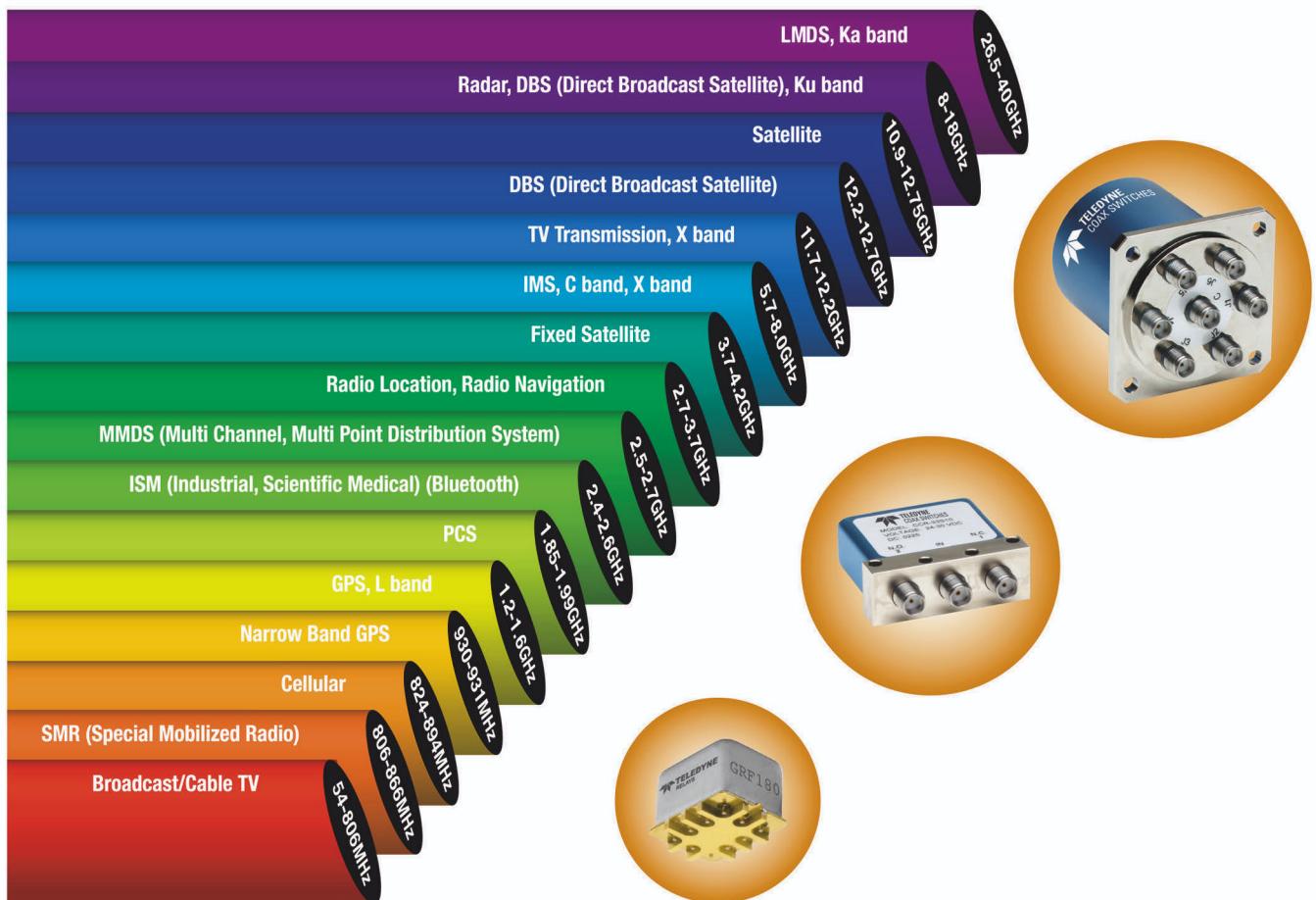
Marcucci also noted that Littelfuse engineers sometimes build custom testers. One such system tests silicon-controlled rectifiers (SCRs) and thyristors for a customer that supplies electronics to a company that makes small engines (**Figure 5**). A DC motor with a vari-

able-speed control lets technicians dial in the required speed of the attached standard flywheel assembly. A Hall-effect sensor produces a pulse for each revolution to verify the exact speed on a scope. A modified ignition coil facilitates the monitoring of the coil's trigger and ignition pulses, and a fixture lets technicians insert devices to test.

The Des Plaines testing labs, and those in Texas and China, let engineers and technicians subject Littelfuse devices to a wide range of electrical and environmental stresses. Because Littelfuse devices protect circuits of all sizes, engineers must evaluate the parts using a wide range of electrical conditions that range from just a few volts and amps to thousands. All that testing produces parts that safeguard your circuits. **T&MW**

2008 BEST in TEST

TEST & MEASUREMENT WORLD
Award Winner


ScanAssist™
Interactive
JTAG/Boundary Scan
Debugger

Find more about extended JTAG/Boundary Scan at the APEX April 1-3, 2008 at booth 973

www.goepel.com

GOPEL
electronic
Get the total Coverage!

RF SWITCHING SOLUTIONS UP TO 33.5 GHz

- Outstanding repeatability
- Through-hole, surface mount and coaxial solutions
- SPST to SP8T, DPDT, Transfer, Bypass and Attenuator options
- For details, visit us on the web or call (888) 551-0448

TELEDYNE
COAX SWITCHES

www.teledynecoax.com

TELEDYNE
RELAYS

A Teledyne Technologies Company
www.teledynerelays.com

Juggling tasks has never been easier

Become more versatile with Agilent handheld digital multimeters

Agilent U1240A Series handheld digital multimeters

- 10,000 count dual display
- True RMS capability and basic DCV accuracy of 0.09%
- Feature-rich: harmonic ratio, switch counter, dual and differential temperature capabilities.

Multi-award winning
U1250A Series

EDN
Hot 100 Product
2006

analogZone
Product of the Year
2006

u.s. 1-800-829-4444

canada 1-877-894-4414

www.agilent.com/find/handhelddmm2

From the designers of the multi award-winning U1250A Series handheld digital multimeters (DMMs) comes the U1240A Series. Built on the idea of giving more for less, they offer a wider array of features that empower you to do your job better.

From problem identification to troubleshooting, the U1240A Series of handheld DMMs has the power to do it all with accuracy and on a higher-resolution dual display—as well as a wide range of features such as harmonic ratio, switch counter and dual and differential temperature capabilities.

The U1250A Series of handheld DMMs has our most robust feature lineup—including automatic data logging, square wave output generation and a frequency counter. What's more, it comes fully equipped with various test probes and data logging software to help you start your work—sooner.

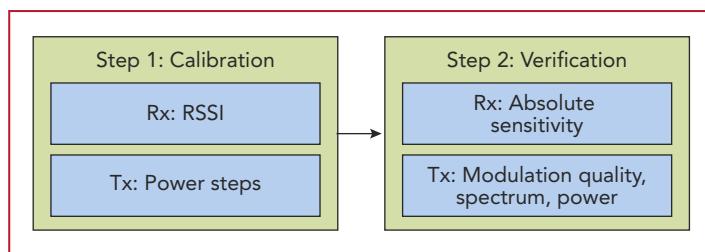
As with any Agilent product, you can be secure in the quality of our handheld DMM family. They come with a calibration certificate and test report, and have been tested to various industrial safety standards to ensure that Agilent products surpass the most important standards—yours.

Agilent Technologies

A new approach eliminates the need for real-time emulation of base-station or network functions during wireless-device production testing to speed the alignment process.

BY HENRY GROPP,
ROHDE & SCHWARZ

NONSIGNALING TECHNIQUE IMPROVES RF TEST


Many wireless devices now combine GSM, WCDMA, Bluetooth, WLAN, GPS, and FM technologies while also operating at the high data rates required for mobile Internet. And because customers demand that mobile radio service be available on any continent, many devices also operate in multifrequency bands and support multimode operation.

While all these features are great for the customer, they create challenges for the test engineer. Each additional technology and frequency band that is added increases the test effort, leading to longer alignment times in production—clearly an impediment for meeting demands for low-priced products. Cost containment requires that manufacturers adopt completely new test approaches. Fortunately, non-signaling test concepts and predefined test sequences can reduce test time by up to a factor of 10.

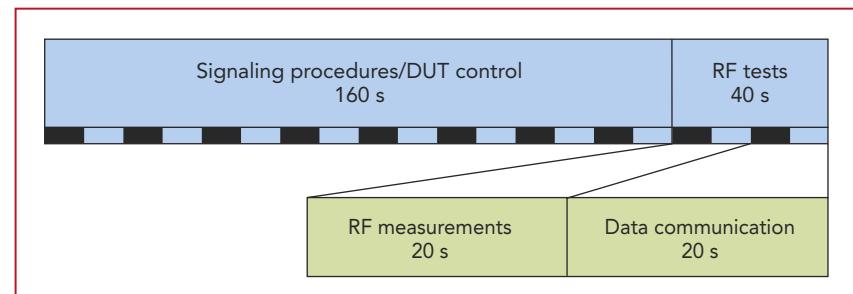
Two-step approach aligns RF devices

RF chips and components that are manufactured under cost-saving measures exhibit variations in their frequency and level characteristics. To ensure that the devices will function properly in a real network, manufacturers use complex alignment procedures during production to eliminate the variations. Most manufacturers prefer a two-step approach for this purpose (Figure 1):

- The first step involves measuring how much the actual transmit and receive parameters of a wireless device deviate from their ideal values. The correction values are then determined and stored in the device. In most cases, this requires the manufacturer to calibrate the transmit power stages and the receive signal strength indication (RSSI) for various mobile radio bands and technologies.
- The second step involves verifying that the fully calibrated device works as intended. The manufacturer measures transmit parameters such as modulation quality, spectrum, and power and compares them with the parameters for the technology for

FIGURE 1. Typical steps in the production of wireless devices involve, first, measuring the deviations of the actual transmit and receive parameters from their ideal values, and second, checking the fully calibrated device.

which the device is designed (GSM, Bluetooth, WLAN, etc.). In most cases, the absolute sensitivity of the receiver is determined by means of a bit-error-ratio (BER) test.


Using the nonsignaling concept

Because each additional technology and each additionally supported frequency band prolongs the two-step test alignment process, some manufacturers are turning to approaches that involve non-signaling techniques for aligning wireless devices. In such an approach, the first step—the calibration step—is carried out in a non-signaling mode in which the device under test (DUT) is operated in a special test mode. The measuring equipment includes RF analyzer and generator functions but does not perform real-time emulation of base-station or network functions. The wireless device is not yet aligned and therefore does not yet perform as it will in later network operation.

In the second test step, verification is carried out by means of the signaling mode. In this mode, the tester simulates various functions of the base station and of the network in real time. Signaling procedures are used in the wireless device to switch through all the technologies, bands, levels, and so on, to be tested.

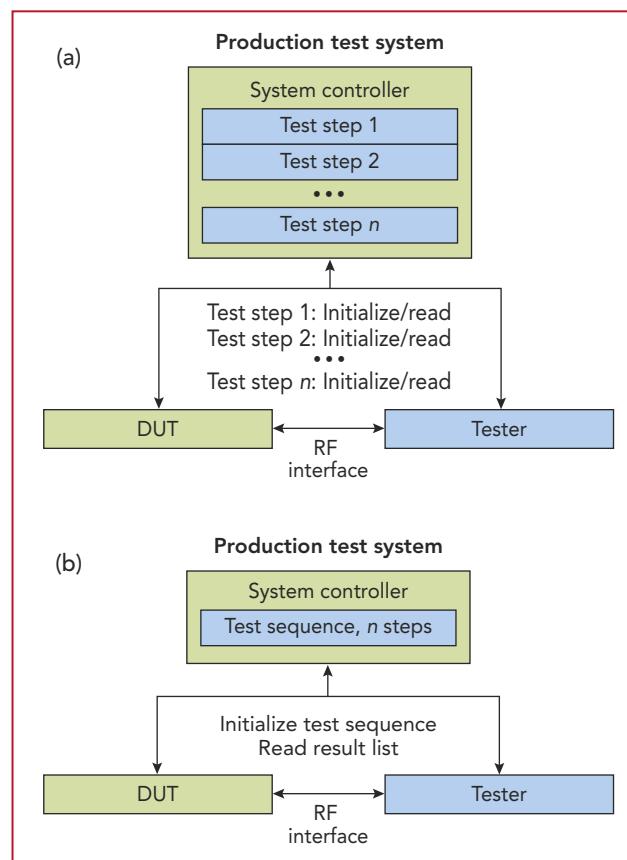
It is the second step—the verification step—that offers the potential for sizeable savings, since the signaling, as compared to the RF measurements alone, takes up to four times longer. The main reason for this difference is that signaling procedures were actually developed for real network operation, not for extremely fast production test. In contrast, the non-signaling mode is the test mode that is especially speed-optimized for production. As a result, the DUT can quickly activate the required test signals (level, frequencies, technologies).

The signaling sequences for driving a GSM/GPRS/WCDMA mobile phone

FIGURE 2. The signaling sequences for driving a GSM/GPRS/WCDMA mobile phone typically require 160 s; RF tests add another 40 s.

WCDMA mobile phone typically require 160 s (**Figure 2**). When you also add in the RF tests, the time is typically increased by a further 40 s. In the classic signaling method, the alignment can thus typically be expected to take 200 s. If you use the non-signaling approach, the DUT could be aligned in 40 s—a time savings as high as 80%. Communications

testers like our R&S CMW500 employ a non-signaling technique for both steps.


Predefined test sequences reduce data communications

At Rohde & Schwarz, our analyses of test times in the non-signaling mode have shown that a further increase in the speed of the individual RF measurements does

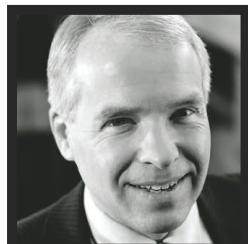
not necessarily lead to a drastic reduction in alignment time. Many radio communication testers already attain a high measurement speed at which they measure GSM signals in real time, for example, so they can carry out a modulation analysis on one time slot for each GSM frame without any problem. Thus, the largest potential for improvement in data transmission is found within the production test system itself.

At present, the most commonly applied test concept is to carry out individual measurements one at a time. The system controller requests each measurement separately—that is, both the DUT and the tester are reinitialized at each test step (**Figure 3**). At the end of each single measurement, the result obtained is returned to the system controller from the tester.

Because production systems must be able to handle not only the measurements themselves but also diverse tasks such as driving the test fixture, their control software consists of many layers that must be

FIGURE 3. (a) Test has typically been carried out one measurement at a time, with reinitialization of the DUT and tester required after each step. (b) Predefined test sequences allow test results to be accumulated and transferred to a system controller all at once.

FREE WEBCAST


OVERVIEW OF THE LATEST TEST METHODOLOGIES FOR HIGH SPEED SERIAL DESIGNS

Increasing data rates on the next generation Serial Data standards are creating new measurement challenges for all layers of the protocol stack. Tektronix understands these challenges and has a variety of tools available to address even the most complex of test requirements. This toolset includes solutions for signal integrity and compliance testing, receiver testing, digital validation and debug, and serial data link and network analysis.

> > > IN THIS WEBINAR we will touch on the most common as well as the most challenging measurement tasks and how Tektronix solutions can help to better characterize and validate your high speed design.

SPEAKER:
Randy White
High-Speed Serial Applications
Technical Marketing Manager,
Tektronix

MODERATOR:
Rick Nelson
Editor-in-Chief,
Test & Measurement World

REGISTER NOW!

TMWorld.com/Webcasts

Sponsored by: **Tektronix**
Enabling Innovation

Hosted by: **Test & MEASUREMENT WORLD**
TMWorld.com

EDN[®]

traversed from top to bottom and back again for each test step. This is a time-consuming process that creates a bottleneck.

To shorten the cycle, mobile communications testers with a nonsignaling mode make use of predefined test sequences instead of single measurements. First, the complete sequence of all tests

to be carried out is transferred from the system controller to the DUT and tester in one operation. After receiving a start trigger, the DUT and the tester process the sequence simultaneously. The DUT activates the signals to be measured, and the tester starts the appropriate measurements in sync. The results are stored in

transient memory. At the end of the sequence, the list of all results is transferred to the system controller.

Therefore, the software layer structure must only be traversed a total of two times: once from top to bottom for initialization and then back again in order to transmit the list of results. This approach allows a further 50% reduction in test time in the nonsignaling mode.

In the past, chipset and wireless device manufacturers focused on customizing their solutions to meet the end customer's requirements. New features such as higher data rates, better ease of operation, and smaller dimensions should offer a more attractive solution.

To implement the test modes that must be used for nonsignaling production concepts, chip designers must include special test modes on their devices. For established technologies such as GSM and WCDMA, fulfilling this task should not be any problem. The extra development effort will quickly pay for itself.

New technologies such as LTE, however, represent a notable challenge. To ensure they present a stable and functioning solution to the customer on schedule at rollout, manufacturers use a production test setup that matches how the device will operate in a real network as precisely as possible. As a result, signaling concepts are employed for new product designs. Measuring equipment that employs nonsignaling techniques must, therefore, be able to accommodate signaling tests as necessary.

It is possible for the test time in wireless device production to be reduced by a factor of up to 10. For this to happen, chipset manufacturers must integrate the required test modes, and the production line must incorporate a tester with a nonsignaling mode and predefined test sequences. **T&MW**

"WE SAVED ABOUT 12 DAYS OF WORK AND \$6,000 IN TRAVEL EXPENSES AT APEX!"

It's MY Show!

"With the information from the show, not only were we able to purchase \$100,000 worth of AOI equipment, we also were able to downselect vendors for our selective soldering project. This show is a tremendous resource for information and developing contacts."

*Bill Kasprzak,
Electronics Manufacturing Process Engineer
Moog, Inc.*

IPC Printed Circuits Expo®, APEX® and the Designers Summit

The ONLY international show featuring a premier exhibition, influential standards development meetings, an exclusive technical conference and first-rate professional development courses.

LANDALAY BAY

LAS VEGAS

DESIGN PRINTED BOARDS ELECTRONICS ASSEMBLY TEST

CONFERENCE & EXHIBITION: April 1–3, 2008
MEETINGS: March 29–April 3, 2008
Mandalay Bay Resort & Convention Center, Las Vegas
+1 847-597-2860 | 877-472-4724 (U.S./Canada)
shows@ipc.org | www.GoIPCSHows.org

IPC
PRINTED CIRCUITS EXPO **APEX**
and the DESIGNERS SUMMIT

Henry Groppe has been product manager for mobile radio testers at Rohde & Schwarz in Munich since 1997. His main tasks are product definition and marketing of mobile radio test assemblies. After earning a degree in avionics with emphasis on communications/navigation from Riga Aviation University in 1989, he worked in test equipment development at the Dresden Aircraft Factory. From 1993 to 1997, he served mobile radio customers as a sales engineer at Rohde & Schwarz.

AEROSPACE 08

TESTING • DESIGN • MANUFACTURING

15-17 April 2008
New Munich Trade Fair Centre
Germany

www.aerospacetesting.com

Design
Testing
Evaluation
Manufacturing
Assembly
Quality
Compliance

Registration
Now Open

THE WORLD'S LEADING EXHIBITION AND EDUCATIONAL PLATFORM FOR AEROSPACE TESTING, DESIGN AND MANUFACTURING

15–17 April 2008, New Munich
Trade Fair Centre, Germany

Join industry professionals from across the world for 3 days of networking, business, expert knowledge and latest solutions in aerospace design, testing and manufacturing.

- 60+ free to attend technical seminars
- Specialist workshops
- Live demonstrations
- Technical tours to key regional aerospace facilities
- 300+ expected exhibitors

REGISTER FREE NOW:
www.aerospacetesting.com

ORGANISED BY

 Reed Exhibitions
Aerospace & Aviation Group

OFFICIAL MEDIA PARTNERS

 AEROSPACE
MANUFACTURING

 AEROSPACE
TESTING
INTERNATIONAL
MAGAZINE

 Flight
www.flightglobal.com

SUPPORTED BY

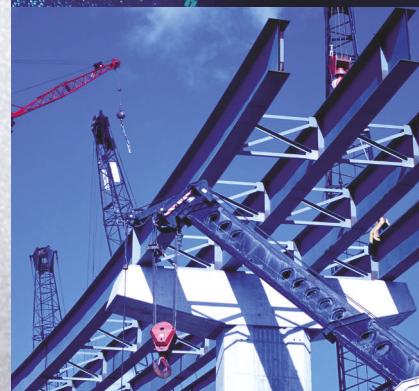
 bavAIRia
Europe's heart of aerospace
and navigation

 Test &
MEASUREMENT
WORLD
TMWorld.com

high density fiber optic interconnections for harsh environments

*Are arduous operating conditions
challenging your fiber optic projects?*

Superior bandwidth, long range and flexibility, fiber optic technology has opened new possibilities for data transmission systems. Even for those operated in demanding environments.


Fischer Connectors has been developing rugged connector solutions for more than 50 years. With high flexibility of configurations, our products are used in state of the art electronic equipment such as medical apparatus, scientific or instrumentation devices, defense and security systems. Reliable, rugged, sealed, compact, our connector solutions are designed to resist to the toughest conditions.

Buildings, bridges, dams, ships, floating rigs, or aircrafts, many outdoor structures can be equipped with a ruggedized fiber-based data transmission system. We can help you develop the fiber optic connector solution that will optimize the performances of your specific application. Either with:

- ✓ **custom-made connectors, originally built rugged, or**
- ✓ **standard connectors, ruggedized with a protective housing.**

Contact us!

More information at: rugged-solutions@fischerconnectors.ch

Ruggedized connector solutions

- ✓ *Circular push-pull system*
- ✓ *Shock resistant*
- ✓ *Sealed IP68 (2m/24h)*
- ✓ *Corrosion resistant*
- ✓ *Lightweight and compact*
- ✓ *Calibrated locking system*
- ✓ *Easy termination and servicing*

www.fischerconnectors.com

Swiss Headquarters
Fischer Connectors SA
CH-1143 Apples
Phone +41 21 800 95 95
Fax +41 21 800 39 24

f WOW
f CONNECTORS ®
i sch er

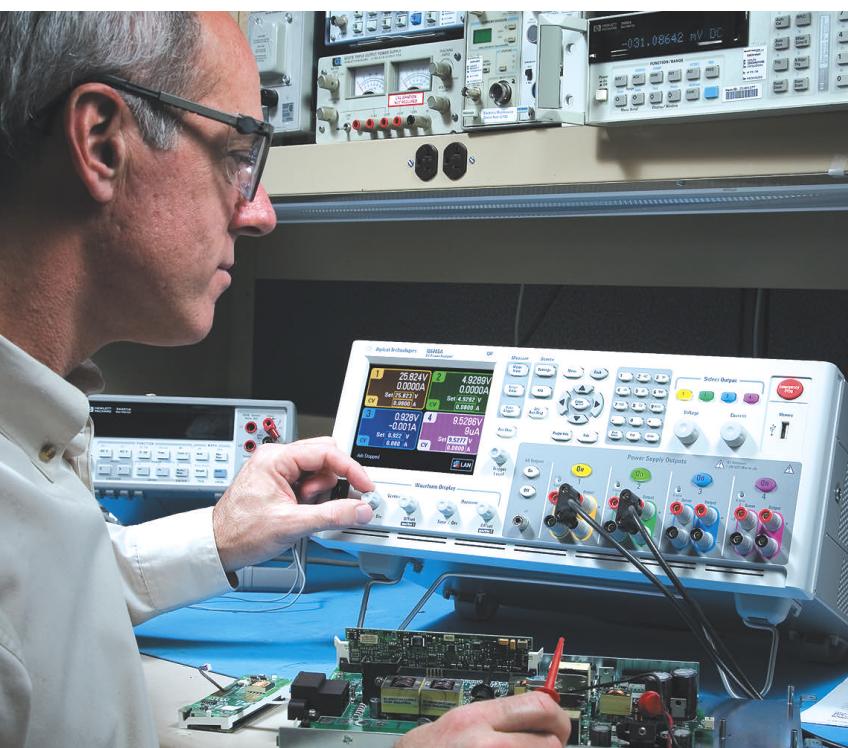
NOMADIC PRODUCTS PUT POWER SOURCES TO THE TEST

Power sources substituting for batteries must respond unlike conventional supplies.

BY ALEX MENDELOHN, CONTRIBUTING TECHNICAL EDITOR

Cellphones and other wireless communications devices can be difficult to test because of the dynamic requirements they place on their batteries. To conserve power, these devices rapidly switch into high-power operation and then drop back into lower-power idle, power-down, or hibernation sleep modes. As a result, the power sources that substitute for batteries during test and evaluation need features that often aren't available in general-purpose supplies.

Laboratory power supplies can act as substitutes for electrochemical power sources during tests, but because battery-charger circuits also need to be evaluated, programmable sources are a must. In addition, specialty power supplies offer features


such as intelligent control of output voltage ramp-up and ramp-down, datalogging, and waveform generation, as well as the features of instruments such as precision ammeters and voltmeters. You may also need a programmable electronic load in order to evaluate battery discharge characteristics.

Circuits respond to a fully charged battery differently from the way they respond to one that has a low level of charge or is completely discharged. "The trend is toward lower-voltage circuitry and longer operation between recharge," said Bob Green, senior market development manager at Keithley Instruments. "It's driving designers to decrease the minimum voltage at which devices will operate before they automatically turn off to prevent damage."

"You can no longer simply select any convenient bench supply that provides the right mix of voltage and current," said Green. "You need supplies optimized to operate with resistive loads. General-purpose power supplies, even if they're designed to operate across a range of loads, aren't suitable."

Dynamic loads

Capturing waveforms, such as a cellphone's voltage levels during a start-up sequence, also requires instrumentation that can record and display rapidly changing voltages and currents as well as transients. Determining the type of current pulses a battery-powered device under test (DUT) draws is essential. In most cases, pulse magnitude, rise times, fall times, and frequency need to be measured. "A sup-

Requiring no programming, the N6705A combined analyzer and power source from Agilent Technologies measures DC voltage and current draw of battery-powered products. The instrument houses multiple power-supply modules, a DMM, a recording oscilloscope, an arbitrary waveform generator, and a datalogger. Courtesy of Agilent Technologies.

ply's voltage droop and recovery must be ascertained, based on the amount that will cause a DUT to fail the test or shut off," noted Green.

Cellular telephones, in particular, impose burdens on a power source's dynamic response. The North American IS-54 cellular standard uses frequency-division multiple access (FDMA) and time-division multiple access (TDMA), with RF transmissions allocated in time slots of 6.67 ms. European GSM FDMA/TDMA cellphones transmit in slots as short as 576 μ s.

Intended for testing battery-operated products, Keithley's dual-channel externally triggered Model 2306-VS battery/charger simulator has ultra-fast transient response to provide output characteristics identical to actual batteries delivering pulsed loads.

Courtesy of Keithley Instruments.

For both standards, when a cellphone switches from standby to full power, its current draw can increase by as much as 1000%. Unfortunately, conventional supplies are usually specified for about a 50% change in current. What's more, while a battery's voltage will decrease slightly by the value of the IR drop across the battery's internal resistance, a conventional bench supply can cause a greater internal voltage drop, sometimes more than 1 V.

For circuits that operate at full power for short intervals, such as a cellphone's power-amplifier stage, a full-power event can be over before a conventional power supply recovers. If the supply can't recover quickly, the performance of the DUT can be compromised.

"Many bench supplies can take milliseconds to recover to their original voltage level," said Green. "If the supply voltage drops below the threshold of a

cellphone's low-battery detection circuitry for a sufficient amount of time, for example, the phone may turn off during testing. That would give a false indication of a failed device."

Control and power monitoring

To get around those kinds of problems, instrumentation companies offer specialized power sources. Keithley, for one, has a number of GPIB-equipped power supplies providing both voltage control and power monitoring. Keithley's dual-channel Model 2306-VS battery/charger

simulator, for example, with external triggering, can be used for development as well as high-speed production testing of DC battery-operated products such as cellphones, RFIC power amplifiers, and other precision components that require a DC voltage supply. The 2306-VS is priced at about \$3500.

Similarly, the company's multichannel Series 2600 System SourceMeter instruments are scalable, high-throughput power sources that deliver precision DC, pulses, and low-frequency AC. Keithley claims its Series 2600 instruments, which carry price tags of about

\$4000 to \$5000 per channel, operate from two to four times the test speed of typical supplies used in I-V functional test applications.

These automated supplies can be used to test devices that undergo substantial load changes for short time intervals. They can simulate a battery's response during a large load change by minimizing drops in voltage and then recovering to within 100 mV of the original voltage in 40 μ s or faster. They can also simultaneously measure short-pulse load currents.

Some of Keithley's programmable DC sources, with internal resistance values that can be set from a dead short to 1 Ω , can also simulate a battery's internal resistance. Onboard analog-to-digital converters, used to measure voltage across precision internal shunts, also do double duty as external digital multimeters (DMMs). Keithley's multi-quadrant instruments, able to source both positive

and negative voltage and current, can also sink current, taking on the characteristics of a discharged rechargeable battery to support test of battery-charger circuits.

Running embedded test script processors (TSPs), the Keithley systems are designed to lower GPIB traffic. Test scripts are available for sweeping, pulsing, and generating waveforms, as well as for performing common component tests. These Basic-like sequences run in real time on microprocessors within the instruments, rather than on host computers, although users can customize the canned routines by using a PC-hosted Keithley tool called Test Script Builder.

Keithley's instruments include non-volatile storage that can save up to 50,000 lines of TSP code and more than 100,000 readings. A single TSP, running on a master unit, can also control and acquire data on as many as 32 channels in larger test suites.

No user programming required

Some vendors eschew user-programming or manual setup entirely. Agilent Technologies, for example, has an extensible DC power analyzer that performs DC sourcing and measurement without the need for any coding. The \$6500 N6705A analyzer is intended to streamline setup and shorten the time it takes to view critical sequences such as turn-on and turn-off timing and startup or inrush current.

The instrument, which can measure applied DC voltage and current draw of a DUT, combines up to four DC power-supply modules, a DMM, a recording oscilloscope, an arbitrary waveform generator, and a datalogger. The N6705A displays voltage or current over time, and its front panel gives the user access to sourcing and measuring functions. Outputs are selected with color-coded push-buttons, and output terminals are color-coded, as is the display.

Built-in logging features can store a few seconds-worth of data, to as long as days or even weeks of data. The analyzer can throttle ramp-up and ramp-down rates, for example, or generate transients and disturbances to see how a device might respond under stressed or worst-case conditions.

The new standard for the old standard

As quiet linear sources, remote-sensing power supplies from Xantrex exhibit less than 0.35-mV RMS voltage noise and less than 0.2-mA RMS current noise. Courtesy of Xantrex Technology.

Bob Zollo, manager for power products at Agilent's Basic, Emerging, and System Technologies Division, explained that because the N6705A includes so many instrument functions, it simplifies test-system setup: Users don't have to cobble together a test system based on a datalogger or DMM, and they don't need to gather shunts and transducers, cable the system, connect it to a PC, and then program it. He observed that if you built your own test system, "You could spend more time creating the software and debugging the equipment than you would running your tests."

Agilent's analyzer is based on 1U-sized multiple-output programmable switch-mode supplies. These can change voltage in 160 μ s and deliver DC with just 5-mVp-p noise. An N6705A can accept from one to four power modules (\$450 to \$2250 each), totaling up to 600 W. The auto-ranging analyzer also includes 50-kHz 4000-point digitizers for measurement purposes.

Agilent's power analyzer and source is also compliant with LXI Class C specs and can be driven across any 10/100BaseT Ethernet LAN through a Web browser. Agilent's product can also be connected directly to a PC using USB 2.0 or GPIB.

Built-in processing

Some vendors rely on built-in processing horsepower, rather than host computers, to handle battery analysis. Kepco's switcher-based BOP series of instruments, for example, are four-quadrant programmable voltage and current supplies.

Equipped with graphical LCDs, the BOP power supplies can handle as much as 1-kW of DC power bidirectionally. The six models in the series accommodate voltages from ± 10 V to as high as ± 100 V and are useful for testing higher-powered systems such as portable tools or automotive electrical systems.

The BOP architecture simultaneously clocks three microprocessors. One is dedi-

cated to the instrument's user interface, another accommodates GPIB, RS-232/RS-485, and multi-instrument IEEE 1118 bus transactions, and the third oversees analog functions. All three communicate internally over a 56-kbps full-duplex optically isolated serial bus.

BOP sources, priced at about \$2100, are equipped with 320x240-pixel monochrome displays that dynamically depict analog and digital representations of output voltage and current.

As four-quadrant supplies, they can source and sink current, so they're suitable for exercising batteries as well as for characterizing devices such as photovoltaic arrays.

Azimuth Systems is another company offering hardware and software to measure power, specifically for battery-powered WiFi devices. The company's Azimuth Battery Life Performance Test, priced at about \$6000, works with its W-Series hardware platform.

Azimuth's hardware and software lets you test the time it takes a battery to run to exhaustion. In operation, you can put a DUT into different operational modes during a test run of realistic scenarios. The software will help determine how a battery-powered product such as a cell-phone will actually be used, delivering metrics revealing actual standby and talk times.

Electronic loads

In some cases, test executives and automated test systems can be overkill. For many tests, all that's needed to ascertain battery suitability is a controllable load. Xantrex Technology and B+K Precision count among companies making electronic loads.

B+K Precision's Model 8500 DC load, selling for about \$1000, is programmable across an RS-232 or optional USB interface. Equipped with a vacuum-fluorescent display, the Model 8500 can be set anywhere between 0 and 120 V, sinking from 1 mA to as much as 30 A, under a 300-W maximum profile. The instru-

Analyst fcs

The new standard

Now there's a real choice when expanding your Agilent in-circuit test capacity.

Reduce your testing cost while preserving your investment in Agilent 3070-series test fixtures and programs with CheckSum's **Analyst fcs™** in-circuit tester.

Analyst fcs delivers the added test capacity you need at about half the cost of buying and using a new Agilent tester.

In-circuit test coverage matched to today's board faults. Power-on test. Available TestJet Technology and Boundary-Scan. High throughput ISP programming with MultiWriter™. Fast program conversion.

Find out more at
www.checksum.com/fcs.asp
Or call:
1-877-CHECKSUM (1-877-243-2578)

CHECKSUM
Fully tested

*Patent pending. TestJet Technology is protected under U.S. Patent Nos. 5,124,660 and 5,254,953.

ment is overcurrent, overvoltage, over-power, and overtemperature protected.

For higher power levels, Xantrex offers the SL Series Sorensen-brand loads in modular and rack-mount configurations that can dissipate as much as 1.8 kW. These loads lend themselves to battery and battery-charger testing as well as to characterization of high-power fuel cells, inverters, AC-to-DC and DC-to-DC converters, and voltage-regulator circuits.

Like Kepco's BOP sources, the SL Series loads can be operated from the front panel, via GPIB or RS-232 links, or under analog control. Pricing for chassis housing multiple modules starts below \$5000.

For applications that require low noise and programmability, Xantrex offers its XDL linear sources, which typically exhibit less than 0.35-mV RMS voltage noise and less than 0.2-mA RMS current noise. For production line testing, XDL boxes can store up to 10 setups in non-volatile memory, with preset overvoltage and overcurrent trips. XDL Series supplies

Programmable DC loads can be used for power-supply, battery, and DC-to-DC converter testing and calibration. The Model 8500 from B+K Precision can load a circuit between 0 and 120 V DC, sinking from 1 mA to as much as 30 A.

Courtesy of B+K Precision.

also offer remote sensing, which can be useful when measuring heavy currents.

Xantrex product marketing director Jason Lee said that for power levels ranging from 1.2 kW to 3 kW, customers typically choose switchers as alternatives to heavier and more costly linears. Some Xantrex switchers cost less than \$1300.

Based on so-called zero voltage switching (ZVS) technology, these moderately priced sources are claimed to exhibit ripple and noise comparable to linear supplies, and they respond rapidly to transient loads. Xantrex also offers the DLM line, which includes 600-W models that deliver outputs adjustable from 0 to as high as 300 VDC, at currents adjustable from 0 to as much as 75 A.

While ordinary lab supplies can sometimes substitute for batteries, today's programmable power sources, with intelligent features and built-in instruments, can simplify and speed up testing. Simulating a battery's performance accurately requires power supplies with bandwidth sufficient to minimize voltage drops during large current transients, as well as circuitry capable of emulating the impedance of a battery. Voltage and current stability, including freedom from oscillation, overshoot, and undershoot, are essential ingredients that the latest generation of power sources can deliver. **T&MW**

Bode 100
PC controlled Vector Network Analyzer

All in one

- Gain Phase Meter
- Vector Network Analyzer
- Impedance Meter
- Sine Wave Generator

Wide frequency range: 1 Hz - 40 MHz
High accuracy of results
Easy data processing & data sharing
Portable - compact lightweight design
Automation Interface

**Vector Network Analysis
down to 1 Hertz!**

US\$ 5,490.-
(PC not included)

Check www.omicron-lab.com for details.

Smart Measurement Solutions

IEEE MICROWAVE THEORY AND TECHNIQUES SOCIETY

INTERNATIONAL MICROWAVE SYMPOSIUM

ATLANTA, GA • JUNE 15–20, 2008

Mark Your Calendar Now

TO ATTEND THE

2008 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM & EXHIBITION

June 15–20, 2008 • Georgia World Congress Center

Featuring Technical Sessions and Workshops for Wireless, Commercial and Military Applications

- *Field Analysis and Guided Waves*
- *Frequency Domain Techniques*
- *Time Domain Techniques*
- *CAD Algorithms and Techniques*
- *Linear Device Modeling*
- *Nonlinear Device Modeling*
- *Nonlinear Circuit Analysis and System Simulation*
- *Transmission Line Elements*
- *Passive Circuit Elements*
- *Planar Passive Filters and Multiplexers*
- *Non-Planar Passive Filters and Multiplexers*
- *Active and Integrated Filters*
- *Ferroelectric, Ferrite and Acoustic Wave Components*
- *MEMS Components and Technologies*
- *Semiconductor Devices and Monolithic IC Technologies*
- *Signal Generation*
- *Frequency Conversion and Control*
- *HF/VHF/UHF Technologies and Applications*
- *Power Amplifier Devices and Integrated Circuits*
- *High Power Amplifiers*
- *Low Noise Components and Receivers*
- *Millimeterwave and Terahertz Components and Technologies*
- *Microwave Photonics*
- *Digital Circuits and Systems at GHz Speeds*
- *Packaging, Interconnects, MCMs and Hybrid Manufacturing*
- *Instrumentation and Measurement Techniques*
- *Biological Effects and Medical Applications*
- *Smart Antennas, Spatial Power Combining and Phased Arrays*
- *Radars and Broadband Communication Systems*
- *Wireless and Cellular Communication Systems*
- *Sensors and Sensor Systems*

In addition to the outstanding Symposium, visit the World's Largest Microwave Exhibition, featuring more than 400 industry innovators displaying their newest wireless and commercial products and services. Once again this year, industry representatives will be presenting application and marketing seminars that will be open to all attendees.

For information on attending the 2008 IEEE MTT-S International Microwave Symposium, please visit the official show Website: www.ims2008.org. For information on the exhibition, please contact the Exhibition Manager at:

Microwave Journal
685 Canton St.
Norwood, MA 02062

Telephone: 781-769-9750
Fax: 781-769-5037
Email: mwj@mwjournal.com

Conference Programs will be mailed in March

Access MTT-S On-Line at *Microwave Journal*® via <http://www.mwjournal.com>.

Software suite automates compliance testing

TekExpress Framework is a software suite that lets you set up and control equipment for physical-layer compliance tests. It finds the equipment, manages the measurements, provides a user interface, performs pass/fail tests, and produces test reports.

The software suite is a base for application-specific software add-ons, the first of which is for Serial ATA Generation 2 testing. TekExpress SerialATA performs 153 compliance tests. You get one-button operation of all transmitter, receiver, and data-channel tests.

The TekExpress SerialATA add-on, called a method of implementation (MOI), supports Tektronix oscilloscopes and arbitrary waveform generators. It also supports third-party equipment such as a frame-error analyzer and an RF switch (all instruments are sold separately).

Prices: TekExpress Framework—\$4900; MOI modules—\$4900–\$19,900. [Tektronix, www.tektronix.com](http://www.tektronix.com).

JTAG module tests DDR2 Mini DIMM 244 interfaces

Goepel electronic's Module/DIMM244so, a member of the company's CION product family, is serially controlled via a boundary-scan test-access port (TAP), and it enables the testing of all signal and voltage supply pins of JEDEC-standard-compliant (JESD79-2C) DDR2 Mini DIMM 244-pin sockets.

The CION Module/DIMM244so plugs directly into the sockets to be tested. Because the modules are equipped with a transparent TAP, several boards of the same or different types can be cascaded in a daisy-chain configuration. The structural boundary-scan test of all DDR2 Mini DIMM 244 signal and voltage supply pins are executed by the onboard CION ASIC ICs. All channels can be independently switched as input/output/tristate. The Module/DIMM244so provides safety mechanisms to prevent damages in case of shorts or adverse voltage conditions.

The new hardware module is supported by Goepel's ScanBooster and ScanFlex boundary-scan controller families as well as by the System Cascon integrated boundary-scan software platform.

Base price: \$1000. [Goepel electronic, www.goepel.com](http://www.goepel.com).

CW generator delivers fast switching speeds

Agilent Technologies' N5183A MXG compact microwave analog signal generator delivers a low cost of ownership and is an extension to the company's MXG signal-generator platform, providing frequency coverage to 20, 32, or 40 GHz. Featuring fast frequency switching speeds and self-maintenance, this signal generator provides manufacturing and R&D engineers with the performance required to make a wide range of measurements on broadband components and systems. It is targeted at electronics warfare (EW), radar, military-communications, and broadband-wireless-access applications.

The N5183A MXG is a continuous wave (CW) signal generator designed to maximize uptime and reduce cost of ownership. Its $\leq 900\text{-}\mu\text{s}$ switching speed optimizes throughput. A simple design delivers easy self-maintenance that reduces downtime to one working day, making it possible for users to maintain or repair the instrument in-house.

Delivering +18-dBm output power to 20 GHz, the instrument also features a level accuracy, with optional step attenuator, of ± 0.6 to ± 0.8 dB. Other options include analog modulation and pulse modulation, all housed in a compact 2U (3-in. high) package. The N5183A MXG can serve as a replacement for legacy HP/Agilent signal generators. It is program-compatible with the 8340, 8360, 8370, ESG, PSG, and 8662A/8663A series of signal generators.

Price range: \$18,000 to \$30,000. [Agilent Technologies, www.agilent.com](http://www.agilent.com).

WaveViewer software gets faster

SynaptiCAD has released a new version of its free WaveViewer waveform-viewing tool. The new version can now read both analog and digital data captured by Agilent Technologies mixed-signal oscilloscopes. It also provides support for importing timing-parameter data in several field-programmable gate array (FPGA) manufacturers' formats, including Altera Timing Analyzer Output (*.tao) and Xilinx Speed File format (*.txt).

The new version sports 5X to 20X faster waveform rendering for analog waveforms or for waveforms containing bus data. It also sports waveform-data compression enhancements, resulting in compressed files up to 50X smaller than in previous versions. The PLI shared library that simulators use to directly create the tool's native compressed btim format was also optimized to reduce simulation overhead. With the new shared library, simulations run using SynaptiCAD's VeriLogger Extreme Verilog simulator execute up to 3X faster than previously when waveform streaming was enabled.

Test & Measurement Software

The upgrade includes a number of new features to improve browsing and annotation of waveform files. Users can sort visible signals by name, and a search tool helps find signals and signal values.

Price: free. *SynaptiCAD*, www.syncad.com.

Mecmesin debuts digital torque tester

Mecmesin, a manufacturer of force and torque testing equipment, has announced the launch of the Tornado digital torque tester. The Tornado is designed to assess the low-level torques associated with small rotating components in automotive and other applications. The Tornado provides for pass/fail alerting with five programmable memory settings. It includes a facility to characterize the two torque peaks associated with tamper-evident closures, it

has an onboard memory that stores up to 500 readings, and it includes a bidirectional data interface for easy export of results.

Designed for laboratory or production use, the compact and portable Tornado features a water-resistant casing fabricated in non-painted polypropylene. Four capacity models are available: 13 lbf-in., 26 lbf-in., 50 lbf-in., and 90 lbf-in. An adjustable mounting plate grips the base of a sample, presenting it for application of clockwise or counter-clockwise torque by hand. Five dedicated function keys on the tester's membrane keypad provide quick access to the most commonly used functions.

Mecmesin, www.mecmesin.com.

measure **FOUNDRY**™

**Open. Powerful.
Application Builder for
Test & Measurement
Systems.**

Rentals

Leases

Sales

The Knowledge. The Equipment. The Solution.

Looking for Test & Measurement Equipment?

 WWW.ATECORP.COM

Rentals Made Easy

Advanced Test Equipment Rentals

MEASUREMENT INSPECTION ENVIRONMENTAL

General Purpose Test Equipment
Environmental Chambers
EMC Test Systems
Electrical Maintenance Testers
Safety & Compliance Instruments
Inspection & QA Equipment
and more

800-404-ATEC
www.atecorp.com

Build powerful test applications without programming. Acquire, display, and distribute applications through Measure Foundry's patented drag-and-drop design.

DATA TRANSLATION®

www.datatranslation.com
8 0 0 - 5 2 5 - 8 5 2 8

Switch On to Pickering

Hardware In The Loop - Fault Insertion

40-190 Fault Insertion Switch
2 Amp 64 Channel

40-196 Fault Insertion Switch
5 Amp 10 Channel

40-195 Fault Insertion Switch
1 Amp 22 Channel

Detailed Price &
Technical
Information On-Line
www.pickeringtest.com

40-595 Fault Insertion Matrix
10 Amp 30 x 8

40-592 Fault Insertion Matrix
1 Amp 248 x 8

Whose Fault is it?

That's why test engineers turn to Pickering Interfaces for their "Hardware In The Loop" fault simulation tools to test and verify safety critical controllers. We provide a scalable range of fault insertion/simulation switching systems, varying from the new 40-190 series fault insertion switches with 64 channels of fault insertion to the 40-592 BRIC matrices supporting up to 248 x 8 crosspoints with maximum fault insertion capability. All Pickering Hardware In The Loop solutions are scalable to any size and are fully supported for all popular PXI software environments including LabView RT* for Real-Time applications.

Wherever safety critical testing of control modules is required, turn to Pickering for your next fault insertion test program.

See these products at www.pickeringtest.com/FIBO/

*LabVIEW RT is a trademark of National Instruments

www.pickeringtest.com

Pickering Interfaces Inc., Grants Pass, OR. Tel: +1 541 471 0700 E-mail: ussales@pickeringtest.com
(East Coast Regional Office) Woburn, MA. Tel: +1 781 897 1710 E-mail: useastsales@pickeringtest.com

Direct Sales Offices in USA, UK, Sweden, Germany, Czech Republic, France and China

pickering

PXI

TEST REPORT

Extending PXI

By Richard A. Quinnell, Contributing Technical Editor

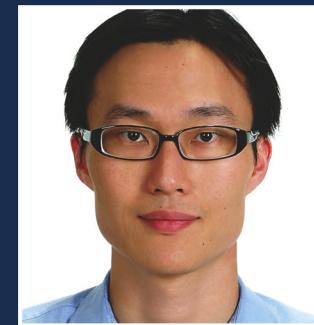
Channel capacity can be a limiting factor in many test setups, but when your PXI card cage is filled to capacity, you are not out of options. A PXI Express extension system will let you add even more instruments to your system by linking an expansion chassis to the host system through a PCI Express (PCIe) cable. Chris Ni, product manager for Adlink Technology, a manufacturer of PXI chassis and modules, recently explained the benefits of using extension systems in test applications.

Q: What benefits can test engineers gain by using an extension system?

A: The first reason to use an extension system is to increase the number of slots available in a single computer system. Most PCs have only a few slots, and even a PXI system is limited to 20 slots. With the bus extension technology, a single PXI system can double the capacity by chaining in an extended PXI chassis. In theory, the capacity of a PXI system is unlimited. You can chain as many extended PXI chassis as needed if the allocation of system resources is not an issue.

The second reason is to separate the I/O cards from the host computer. This can help increase mea-

surement accuracy by distancing the modules from the computer's electronic noise. It also makes the system more modular, which makes repair easier. Separating the I/O from the host also allows installations where the instruments operate in a hazardous environment while the host is in a safer location. [Ed. note: Adlink manufactures extension systems that operate over PCIe cables as long as 7 m.]


Q: Does using an expansion chassis create timing problems in a test system?

A: Timing and triggering are handled on the PXI backplane, not the host system, so this is not an issue with chassis extension. The extension system is just a transparent bridge to the host system.

The only problem we have ever encountered with timing in an extension system occurred when a customer used its own card designs in a PCI system. The design placed the board's PCI controller too far from the connector. It worked all right in a standard PCI system, but not in the expansion chassis. The poor placement added too much delay, and the host controller missed the card during power-up enumeration because it took too long to respond.

Q: What are the advantages to using PCIe for the extension system's link?

A: One reason to use PCIe is that the bandwidth to the host processor is not shared, so the data rate is guaranteed. In PCI and PXI systems, the bus must be shared with all cards in the slot, so bandwidth and access are not deterministic.

Chris Ni
Product manager
Adlink Technology
Courtesy of Adlink Technology

Test engineers might also choose PCIe extension technology because its data throughput is high. The sustained data transfer rate of PCIe-to-PCI/PXI expansion is over 100 Mbytes/s. This allows engineers to design test systems that use a server-class computer for data processing. PCIe provides the bandwidth that allows an expansion chassis to leverage the full power of such computers.

Compared to a PCI-based expansion, PCIe also decreases latency in the interaction between host and chassis. This is because PCIe uses newer technology, including a bridge chip and an equalizer, to link the host and chassis.

Q: What options does your company offer for PXI extension systems?

A: Adlink offers both PCI-to-PXI and PXI-to-PXI extension systems using StarFabric links as well as a PCIe-to-PXI extension system. We will also be coming out with an ExpressCard expansion option for laptop users. These extension systems can use any PXI-compliant chassis from any vendor as the expansion chassis. □

INSIDE THIS REPORT

- 64** Guest commentary
- 64** Do you calibrate PXI?
- 66** PXI and bench instruments evenly matched
- 68** Products

GUEST COMMENTARY

With a decade behind us, it's full steam ahead!

By Nicole Faubert, GaGe/KineticSystems

In 2007, the PXI Systems Alliance (PXISA) proudly marked the 10th anniversary of the PXI specification and celebrated the success of the standard at events held throughout the year. The PXISA also boosted its marketing efforts to highlight PXI as the platform of choice for applications such as data acquisition, automated test, and process control.

The year began with the makeover of the PXISA's Web site, www.pxisa.org. Featuring a new design, the site is the "go-to" place for all that is PXI. It includes a list of companies that provide PXI products and services, application notes and application examples written by member companies, and information about the latest PXI products available on the market.

Autotestcon 2007 was the official site of the PXI specification's 10th anniversary party. The PXISA booth featured three multivendor demonstrations comprising various 3U and 6U PXI/cPCI modules from member companies. The demo systems highlighted the flexibility of the PXI standard, which enables engineers to build com-

plete test systems using PXI modules from multiple vendors. The demos were so well received that the Alliance showcased them at Productronica 2007 as well.

Also in 2007, the PXISA gained two key members in Agilent Technologies and Keithley Instruments, and Aeroflex became a board member of the organization. In 2008, the PXISA plans to build upon the momentum of the past year by recruiting new members and by increasing industry awareness of PXI through more multi-vendor demonstrations at trade shows. With Frost & Sullivan projecting that sales will grow from \$284 million in 2007 to more than \$520 million in 2010 (Ref. 1), it is easy to see why PXI systems and components will continue to be a dominant test platform. □

REFERENCE

Vidyasankar, S., "The ATE industry's hybrid theory," *Test & Measurement World*, Dec. 2007/Jan. 2008, p. 23. www.tmworld.com/2007_12.

Nicole Faubert is responsible for the marketing efforts at GaGe/KineticSystems and is a member of the PXI Systems Alliance marketing committee. nfaubert@gage-applied.com.

Do you calibrate PXI?

By Martin Rowe, Senior Technical Editor

At the 2005 Measurement Science Conference, a consultant described instrument cards as "mindless beasts," because they are measurement instruments whose uncertainties can't be quantified. While that may be true to some extent, PXI measurement cards perform important production measurement functions every day. Manufacturers may calibrate PXI cards with NIST-traceable standards during production, but what happens to the calibration once the cards are placed in service?

PXI cards present the same calibration problems as their PC-plug-in and VXI brethren: Cards calibrated in a cal lab may not be in the chassis where they are used every day, and are thus calibrated in an environment that does not represent reality. Differences in temperature, air flow, and EMI can affect measurement uncertainty.

Perhaps calibration wasn't so important when the only PXI measurement cards were 12-bit data-acquisition cards. But today, you can get PXI digital multimeter (DMM) cards with as much as 7.5 digits of resolution, rivaling many bench meters. As resolution improves, calibration becomes more important.

If you use PXI systems with analog measurement cards such as DMMs, data-acquisition cards, oscilloscopes, or signal sources, do you ever calibrate them? What do you do to calibrate PXI cards?

- We remove the cards from the chassis and send them to our cal lab.
- We send the whole chassis to our lab for calibration.
- We send just the cards to an outside cal lab.
- We send the whole chassis to an outside cal lab.
- We calibrate the cards in place by bringing the calibration equipment to the test station.
- We return the analog PXI cards to the manufacturer for calibration.
- We don't calibrate card-based instruments.

Which do you do? What calibration standards do you use to calibrate the instruments? How long is your system out of commission during calibration? How often do you calibrate PXI cards?

Tell us your story by sending an e-mail to mrowe@tmworld.com, and we'll consider including it in a future article about system calibration. □

PXI Digital Test

The industry's highest performance and widest selection

- Vector rates to 200 MHz with up to 512 MB of memory
- High voltage (-10v to +15v), with per pin programmability
- PXI and PXI Express, 3U and 6U formats
- Support for multiple logic families including LVDS
- Data formatting and algorithmic sequencing
- Up to 244 I/O channels per card

With more than 20 different PXI digital cards in our product line, Geotest has the right solution for today's digital test needs and tomorrow's technologies.

PXI and bench instruments evenly matched

By Richard A. Quinnell, Contributing Technical Editor

When two approaches to the same problem exist in a market, they are bound to compete at some level. For PXI and bench instruments, that competition began in the area of automated testing, where PXI's PC-based control and modular nature gave it compelling advantages. But improvements in modular instrument technology along with new software interfaces are blurring distinc-

This type of operation addresses the need for programming that many engineers see as a barrier to using PXI on the R&D engineering bench. Paul Knight, a test development manager for Radio Frame Networks in Redmond, WA, expressed this concern in an e-mail response to *T&MW* senior technical editor Martin Rowe's blog posting "Do you use PXI on the bench?" at www.tmw.com/blogs.

"We use PXI in our production test equipment, but have not been able to replace traditional instruments on the engineer's desk," wrote Knight. "I believe the lack of front panel controls and/or software panel control limits the effectiveness of the [PXI] instruments. Engineers do not want to have to write code to make measurements."

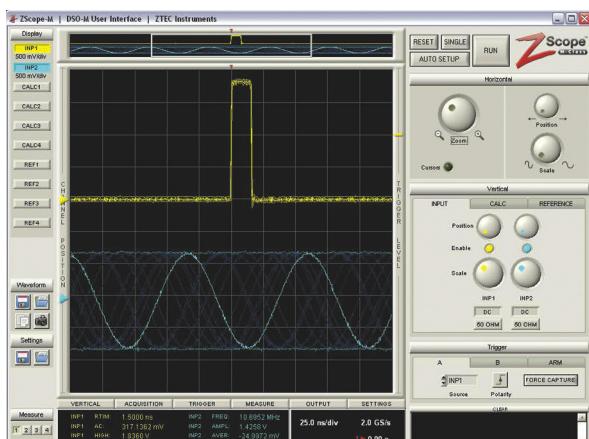
But that barrier is collapsing. Software

packages from companies like ZTEC and National Instruments are now offering graphical user interfaces that mimic the look and operation of bench instruments.

Instead of requiring users to select from menus or create a program to control operational parameters when setting up and making measurements, these interfaces provide users with the opportunity to press buttons and twiddle knobs—or at least perform the on-screen equivalent. The free ZTEC ZScope software package for the company's PXI oscilloscope modules, for instance, presents users with the image of an oscil-

loscope front panel to provide both instrument control and data display (Figure 1).

Increasing competition


By allowing users to operate a PXI system like a bench instrument, such interfaces bring the two test methodologies into more direct competition. This might lead a potential instrument purchaser into looking at the relative performance of each approach, but such an evaluation may well prove inconclusive. PXI and bench instruments are evenly matched in many applications and performance specifications (Figure 2).

"PXI has come a long way in the 10 years since its introduction," said Richard McDonell, senior group manager for PXI and instrument control at National Instruments. "Early units had lower resolution [than bench instruments] and worked at only 100 ksamples per second or so." Now, McDonell pointed out, PXI can push the state of the art. At last year's Autotestcon, NI, BAE Systems, and Phase Matrix demonstrated a jointly developed PXI platform that measures signals as high as 26.5 GHz.

This does not mean that both PXI and bench methodologies have achieved identical performance.

"Benchtop instruments typically lead in high-end (28-bit) resolution or ultra-high frequency ranges," said McDonell, "but by and large, they are very comparable."

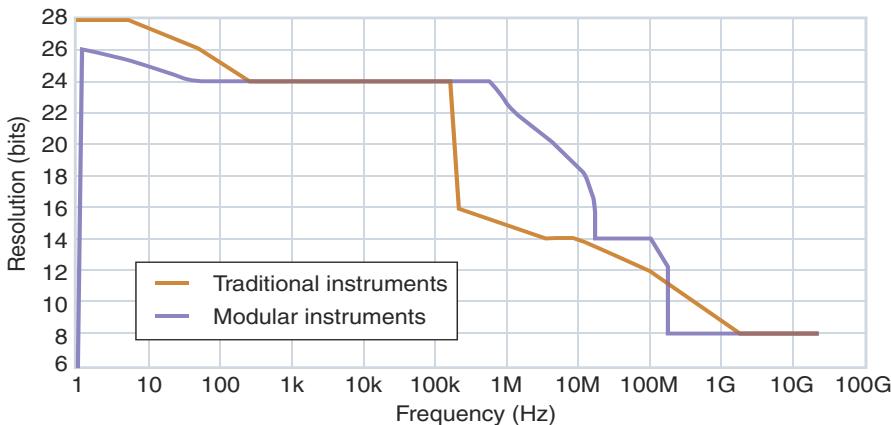

Further, resolution is only one aspect of performance in test systems. Chris van Woerkom, senior marketing engineer at Agilent Technologies, pointed out that metrics such as measurement throughput can also be important. He noted that many PXI instruments depend on the system's CPU to turn raw data into meaning-

Fig. 1 User interface software is allowing PXI instruments to mimic the look and feel of bench instruments, blurring the distinctions between them. Courtesy of ZTEC.

tions between PXI and desktop instruments, making the choice of which approach to use more complex.

The introduction by Aeroflex at Autotestcon 2007 of the 3000A PXI chassis for RF test highlighted this blurring of lines. The chassis includes a built-in touch-sensitive display panel that works with the system controller to turn a populated chassis into a self-contained instrument. Instead of having the separate keyboard and monitor that make most PXI systems seem like computers with an instrumentation peripheral, the Aeroflex chassis seems like a traditional bench instrument.

Fig. 2 In key performance parameters such as frequency and resolution, differences between PXI and bench instruments have virtually vanished.

Courtesy of National Instruments.

ful measurements. In a well-populated system, then, the need to share bus bandwidth may limit an instrument's achievable measurement throughput despite it having a high data rate. Bench instruments do not suffer from such limitations because they have built-in processing.

That kind of built-in processing is making its way into PXI instruments, though. "We're now seeing PXI modules with processing being performed in the module," said ZTEC's director of marketing and product strategy Boyd Shaw. "In the last five years, modular oscilloscopes have gone from being just digitizers to having all the performance in the module. We now have the same kinds of signal conditioning, waveform analysis, and parameter measurement algorithms as benchtop devices."

No clear superiority

The result is that—from a performance standpoint—neither bench nor PXI instruments have a compelling claim to superiority. Nor is that situation likely to change. Individual products of one type or another will temporarily win the top performance slot, but that honor typically is now trading back and forth.

Further, consolidation within the test instrument community is creating vendors that offer both PXI and bench products, ensuring that technical advances in one will inevitably make their way into the other.

Agilent, for example, has acquired PXI companies PXIT and Acqiris and is now offering some PXI and bench instruments made with identical boards, parts, software, and specifications. The only differences are the interface and the footprint. "We are differentiating ourselves with superior metrology," said van Woerkom, "and letting our customers decide which package to purchase."

This kind of commonality is also eroding another traditional difference between PXI and bench instruments: the ease of porting R&D test development to the production floor. With modular instrumentation becoming the foundation of production test equipment, using PXI in the lab gave an advantage over bench instruments when it came time to create production test routines. When both types of instruments use the same core elements, either choice yields the benefit.

Instead of performance, then, developers selecting between bench and PXI test instruments might consider how they are going to use the instrument. Each approach has advantages under different scenarios. PXI instruments, for instance, can typically fit more functionality into a smaller package than bench instruments. A PXI system can provide dozens of channels in the same size package as a typical two-channel bench oscilloscope, making PXI better suited for space-constrained installations. On the other hand, bench instruments do

not have the bus, size, or power constraints of PXI systems, so they can offer more diverse functionality and built-in processing than individual PXI modules.

Further, most or all of the functionality in bench instruments is hard-wired and does not need to wait for an operating system and software to configure the instrument before making a measurement. This makes bench instruments better suited for taking quick-look measurements. LeCroy points out that its WaveJet portable oscilloscope, for instance, is on and ready to use in less than 3 s. The operating systems used in PC-like PXI controllers take far longer just to boot.

In the end, a user's choice of platform may simply boil down to preference. Older engineers whose careers pre-date PXI and modular instrumentation may feel more comfortable using buttons and knobs than mouse clicks and keystrokes. Younger engineers, having spent nearly their entire lives using personal computers, may feel precisely the opposite.

None of these factors is compelling enough to make one approach win out over the other across the board. Improvements in interfaces, ease of use, packaging, and function density may eventually allow PXI instruments to overtake bench devices in all uses, but not any time soon. Said ZTEC's Shaw, "People will need benchtop instruments for years to come." □

PRODUCTS

Module simulates RTDs

Pickering Interfaces has released the 40-262, an 18-channel variable-resistor module designed to simulate

PT100 and PT1000 RTDs. The 3U PXI module can provide a resistance setting resolution of better than 10 mΩ over the entire resistance range and an accuracy of better than 0.1% for all resistance settings, according to Pickering. Each simulation channel is able

to provide a short-circuit or open-circuit setting to simulate faulty wiring connections to a sensor. Calibration of each resistor channel can be verified by connecting the calibration port to a digital multimeter.

Pickering Interfaces, www.pickeringtest.com.

Everything you need in data acquisition Complete PXI/CompactPCI product line

PXI/cPCI Data Acquisition

- Analog I/O, digital I/O, frequency counters, multiplexers, digitizers, and chassis
- 3U & 6U form factors
- From 32 to more than 800 channels in a single chassis
- On-board signal conditioning
- As low as \$20 per channel
- C, Visual Basic, and LabVIEW drivers provided

Built upon proven technology - used by leading military, aerospace and industrial companies worldwide

Contact us today for more information:

■ 1-815-838-0005 ■ www.kscorp.com/pxi

NI introduces SMU and switch modules

National Instruments has introduced its first PXI source-measure unit (SMU) as well as two high-density PXI switches, products that the company says can be used in semiconductor parametric tests and electronic device and component validation. Engineers can use these modules to characterize voltage and current parameters on high-pin-count devices.

The NI PXI-4130 is a programmable high-power 3U PXI module that features a single isolated SMU channel with a four-quadrant ±20-V output that incorporates remote four-wire sense. This channel can source up to 40 W in quadrants I and III and sink up to 10 W in quadrants II and IV. An additional power-supply channel handles voltage and current source and readback. The five available current ranges offer measurement resolution down to 1 nA.

The NI PXI-2535 and PXI-2536 switch modules offer 544 crosspoints, which NI claims is the largest matrix density available for a single 3U PXI slot. The PXI-2535 is configured as a 4x136 one-wire matrix; the NI PXI-2536 is configured as an 8x68 one-wire matrix. The modules provide switching speeds as high as 50,000 crosspoints/s.

Base prices: PXI-4130—\$2499; PXI-2535 and PXI-2536—\$2999.

National Instruments, www.ni.com.

225 Wyman St., Waltham, MA 02451
781-734-8423 Fax: 781-734-8070

Sales e-mail: tmwsales@reedbusiness.com
Editorial e-mail: tmw@reedbusiness.com
Web: www.tmworld.com

BUSINESS STAFF

Publisher: Russell E. Pratt
rpratt@reedbusiness.com

Assistant to the Publisher: Darlene Fisher
Online Client Services Manager: Lyndsay A. Richmond

Market Research Director: Rhonda McGee

Group Production Director: Dorothy Buchholz
Production Manager: Joshua Levin-Epstein

Customer Contracts Coordinator: Kristin Chalifour

ADVERTISING SALES

CT, NJ, New York City, Long Island:
Mike Moore, Chatham, NJ. 973-701-9340
1.mikemoore@gmail.com

Midwest, Southeast, NY (except NYC & LI), PA, MD, DE, and Canada:
James Leahy, Kenosha, WI. 262-656-1064
james.leahy@reedbusiness.com

CA, CO, TX, and Northwest:
Mary Lu Buse, Calabasas, CA. 818-880-4024
marylu.buse@reedbusiness.com

New England, South Central, Classified, Test Marts, TestLits, and Account Development Nationwide:
Kathy McNamara, Waltham, MA. 781-734-8421
kathy.mcnamara@reedbusiness.com

Benelux, United Kingdom, Ireland, Scandinavia:
John Waddell, London, England. 44-20-8312-4696

Germany, Austria, Switzerland: Adela Ploner, Dachau, Germany. 49-8131-366992-0

Italy: Roberto Laureri, Milano, Italy. 39-02-236-2500

France, Spain, Portugal: Alain Faure, Issy-les-Moulineaux, France. 33-1-55-95-95-11

Israel: Asa Talbar, Tel Aviv, Israel. Fax: 972-3-562-9565

Asia:

Hong Kong: Simon Lee, 852-2965-1526

Japan: Ken Mikami, Tokyo, Japan. 81-3-3402-0028

Korea: M.S. Kim, Seoul, South Korea. 82-02-752-4392

Taiwan: Grace Wu, Singapore. 886-22311-7609

Singapore, Malaysia: Wai Chun Chen, Singapore. 65-65441115

VOL. 28, NO. 2

Subscription Policy

Test & Measurement World® (ISSN 0744-1657) (GST Reg. # 123397457) is published monthly except January by Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Reed Business Information, a division of Reed Elsevier, is located at 360 Park Avenue, New York, NY 10010. Tad Smith, CEO. Periodicals postage paid at Littleton, CO 80126, and additional mailing offices. Circulation records are maintained at Reed Business Information, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Telephone: 800-446-6551. **POSTMASTER:** Send address changes to Test & Measurement World®, P.O. Box 7500, Highlands Ranch, CO 80163-7500. **For Canada:** Publications Mail Agreement No. 40685520. Return undeliverable Canadian addresses to: RCS International, Box 697 STN A, Windsor Ontario N9A 6N4. Email: Submail@ReedBusiness.com. **Test & Measurement World®** copyright 2008 by Reed Elsevier Inc. Rates for non-qualified one-year subscriptions, including all issues: US, \$103; Canada, \$152 (includes 7% GST, GST# 123397457); Mexico, \$150; International (Priority), \$215. Except for special issues where price changes are indicated, single copies are available for \$10 (US orders) and \$15 (foreign orders). Buyer's Guide Issue (July) is available for \$35 (US orders) and \$40 (foreign orders). **Please address all subscription mail to** Test & Measurement World®, 8878 S. Barrons Blvd., Highlands Ranch, CO 80129-2345. Test & Measurement World® is a registered trademark of Reed Properties Inc., used under license. (Printed in U.S.A.)

We Listen. Think. And Create.

Serial I/O

Distributed I/O

Digital I/O

Industrial Computing

HMI

SeaDAC USB modules are the fastest, most reliable way to connect I/O to any computer.

SeaDAC USB Modules Offer:

- Optically Isolated Inputs, Reed Relay Outputs, Form C Relay Outputs, Digital/Analog Combo
- Status Indicator LEDs for Communication, Fault, & Status
- Field Removable Terminal Block Connectors
- High-Retention USB Type B Connector
- Rugged Plastic Tabletop Enclosure
- Extended Temperature Option Available

FOCUS
On Success
Call Today!

SEALEVEL
sealevel.com > sales@sealevel.com > 864.843.8067

Expand the Measurement Range of your PXI Digitizer

Differential Instrumentation Amplifier

Model 4040A

- Bandwidth: 50 MHz
- Attenuation: ± 1 , ± 10 , ± 100
- Gain: $\times 1$, $\times 10$, $\times 100$
- Input Voltage: ± 100 V, Differential
- Input Impedance: $1 \text{ M}\Omega$, $50 \text{ }\Omega$
- Input Noise: $9 \text{ nV}/\sqrt{\text{Hz}}$
- Filters: 100 kHz, 1 MHz
- Offset Control

TEGAM

Be certain.

800-666-1010 www.tegam.com

10 TEGAM Way, Geneva, Ohio 44041

Reed Electronics Group

SAVE THE DATE!

March 19th, 2 PM, ET

> **NEW
UPCOMING WEBCAST**

DEVELOP BETTER TEST SYSTEMS WITH ADVANCED DATA MANAGEMENT

SPEAKER:
Marcelo Souhami
Averna

Learn how the best practitioners in communications and electronics rely on proven, cost-effective, off-the-shelf test data management solutions to accelerate and simplify test system development, while increasing control of their remote test activities.

In this webcast you will learn:

- The nature of test data, and the impact it can have at different stages of the product lifecycle
- How centralized test data facilitates data mining and analysis, making it easier to react to production results
- To what extent different departments within an organization can leverage test data to improve product quality
- How to build a business case that justifies investment in an off-the-shelf data management solution

With practical examples of the Proligent™ solution, we will demonstrate how to:

- Capture and manage test data in a central database
- Automatically deploy engineering changes to test systems in the field
- Manage product versions efficiently
- Gain real-time visibility over production with web-based reporting

**REGISTER
NOW!**

TMWorld.com/Webcasts

Sponsored and produced by:

PROLIGENT

Hosted by:

**Test &
MEASUREMENT
WORLD**
TMWorld.com

ADVERTISER INDEX

ADVERTISER	PAGE
Advanced Test Equipment	61
Aeroflex	C-3
Agilent Technologies	2
Agilent Technologies	10
Agilent Technologies	36
Agilent Technologies	48
Amplifier Research	43
CheckSum	57
Circuit Specialists	71
Data Translation	35
Data Translation	61
Dow-Key Microwave	41
Fischer Connectors	54
Fluke	9
Geotest	65
GL Communications	71
Goepel Electronics	46
IPC/APEX	52
Keithley Instruments	6
Kikusui America	44
KineticSystems	68
Lemo	4
Liu & DB Enterprises	71
Measurement Computing	45
Microwave Journal	59
National Instruments	14
National Instruments	C-4
Noise Com	12
Omega Engineering	1
Omega Engineering	71
Omicron	58
Pickering Interfaces	62
Reed Exhibitions	53
Rohde & Schwarz	5
Rohde & Schwarz	15
Rohde & Schwarz	17-32
Sealevel Systems	69
Tegam	69
Teledyne Relays	47
Universal Switching	8
Verigy US	C-2

Portable USB T1 E1 Analyzer

- ✓ T1/E1 - Voice, Digits, Tones, Fax, Modem,...
- ✓ Protocol Analysis & Simulation
- ✓ Voice Quality Testing
- ✓ Visual Analysis, Real-time Listening & Recording

GL Communications Inc.
Comprehensive Telecom Test Solutions
301-670-4784 * info@gl.com * www.gl.com

Great Deals @ CircuitSpecialists.com

20MHz Handheld Digital Oscilloscope

The GDS-122 is a handheld oscilloscope equipped with a 3.8-inch color LCD which clearly shows 2 different channel waveforms on one display. Its 100 MSa/s real-time sampling rate and Dual Waveform Math (DWM) function provide users with fast waveform analyzing capability. The DMM mode offers a 3 1/2 digit, 4,000 count digital multimeter and auto/manual range adjusting function.

NEW!

Item # GDS-122: \$709.00

100,000 Count Programmable Data Logging DMM

A DMM with 100,000 count accuracy and a built-in data logger that helps you find intermittent problems and monitor equipment. The D620 can record and store in its own internal memory up to 37,300 time stamped data values in all functions by simply pressing a button.

Item # PROTEK D620: \$169.00

Programmable DC Power Supplies

• Up to 10 settings stored in memory
 • Optional RS-232 interface
 • May be used in series or parallel modes with additional supplies.
 • Low output ripple & noise
 • LCD display with backlight
 • High resolution at 1mV

Proud Distributor of Brand Electronics Testing & Measurement Instruments

WWW.LDBWEBTRONICS.COM

LIU & DB ENTERPRISES, INC.

7009 S 107th St • La Vista NE 68128

800-370-2197 • PH: 402-991-1999 • FX: 402-991-8889

EBay ID: LDBWEBTRONICS

- New universal wireless RS232 to USB transceiver interfaces to any RS232 device, and makes it wireless
- Simply connect the wireless transmitter to an RS232 device; the wireless receiver module connects to a PC via USB interface to communicate with the RS232 device as if it's directly connected
- Wireless receiver can conveniently operate multiple wireless transmitter modules up to 120 m on a clear line of sight
- Can be used in portable as well as fixed mount industrial applications
- Ideally suited for any industrial product that has an RS232 interface
- Price starts at \$159

OMEGA ENGINEERING, INC.
info@omega.com • Tel: 203-359-1660
www.omega.com

www.CircuitSpecialists.com

A Sophisticated Scope Adapter

Price Breakthrough!

200MHz USB DSO

\$819.00

Full Details on web, Item#: 200DSO

Circuit Specialists, Inc.
www.CircuitSpecialists.com
800-528-1417 / Fax:480-464-5824

JOHN R. REGAZZI

CEO
Giga-tronics
San Ramon, CA

John Regazzi has served as CEO and a director of Giga-tronics since April 2006. Prior to joining the company in 2001 as VP of engineering, Regazzi spent 22 years with Hewlett-Packard and Agilent Technologies, holding a variety of leadership positions, including R&D project manager, R&D section manager, and solutions architect. Regazzi holds a BSEE degree from Rutgers University and an MSEE degree from Lehigh University.

Contributing editor Larry Maloney conducted a phone interview with John Regazzi on trends in microwave test and switching applications.

Where switching meets instrumentation

Q: What is Giga-tronics' prime area of technical leadership?

A: We are primarily an RF and microwave design company, with expertise in signal generation and routing. For example, we can offer engineers high-speed digital techniques for frequency synthesis. We are vertically integrated around signal-generation technology, building our own YIG oscillators, our own phase-lock loops (PLLs), and all the microwave modules for signal conditioning. As for leadership, I would point to our advanced synthesizers, which feature our Accumulative High-Frequency Feedback loop design. This allows very low divide numbers in our PLL, which translates into very low phase noise. We also can achieve microhertz tuning resolution in a single loop. The result is fast frequency switching in a compact, low-cost design.

Q: Who are the customers for these synthesizers?

A: There's the bench engineer who wants a cost-effective signal generator with good phase noise. But the fast-switching capability also puts us into applications that need a fast local oscillator to collect a lot of data, such as antenna test and RFIC test.

Q: To what extent are you combining your products into systems solutions?

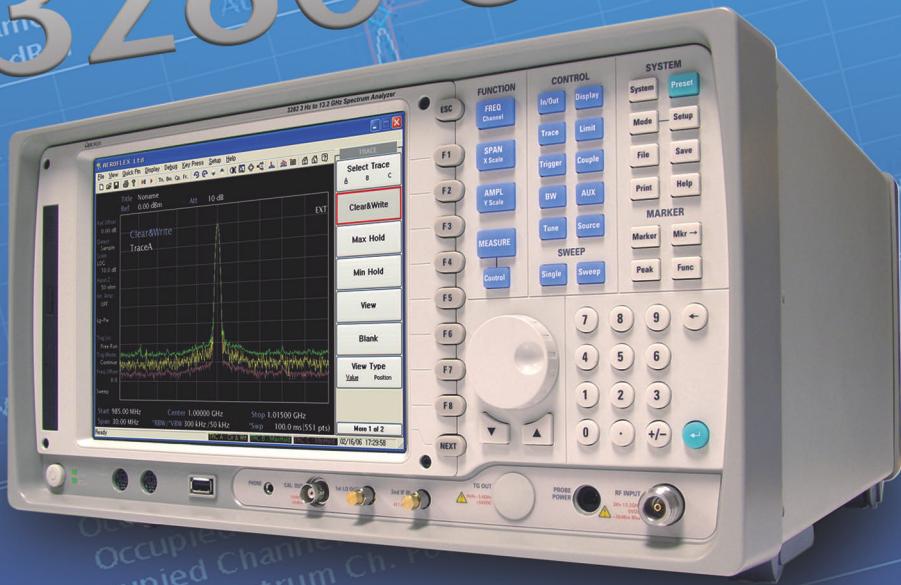
A: A good example is our cable correction feature. Here, our synthesizers and power meters work together to achieve very fast correction of path loss within switching systems. At a recent trade show, we highlighted our Ascor switching solutions, and we had the synthesizer and power meter calibrating all the measurement paths automatically. This is a common task in ATE, and the combination of our products performs this function in seconds, compared to nearly 30 min for competitive products.

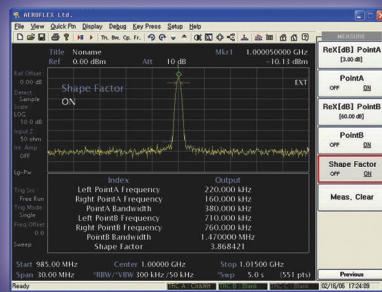
Q: Are you also able to design custom test solutions?

A: Yes, especially with our Ascor line. Switching solutions find themselves between standard test equipment and the de-

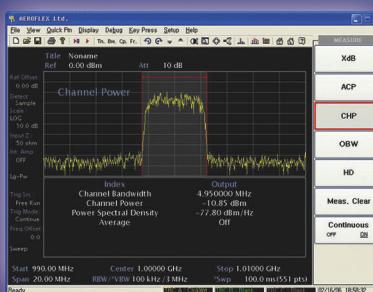
vice under test, which is almost always unique with various inputs and outputs, connectors, and so on. So, switching solutions need to be customized. On the Delta Launch Vehicle, for instance, Ascor reviewed what had become an obsolete suite of test assets and suggested design improvements that led to a new Giga-tronics contract with Boeing. Ascor designed a single-tier "Hypertac" receiver mechanism, which reduced high insertion forces. Among other examples, customized Ascor switches are found in a new testing system for the Space Shuttle's steering motor control unit. Currently, we are designing a switch upgrade on testers targeted for Boeing's new 787 Dreamliner.

Q: Does this expertise in instrumentation and switches give Giga-tronics an edge with customers?



A: In many ways, yes. Our switch designers are cognizant of the fact that instruments make measurements through the switch path. So, over the years, we have developed a set of best practices in design. For example, our switches offer about five times more bandwidth for the same switching arrangements than competitive products. We use transmission line techniques when we are developing the circuitry for the paths, so we are able to compensate for the discontinuities of the relays. We also isolate all the grounds. As a result, our products end up getting used in applications where others have failed, such as measuring very small signals in the presence of noise or where you must maintain the fidelity of a signal. In short, our instrumentation background has made our switch designers much more sensitive to how switches are used with test equipment, and they've modified their designs accordingly. **T&M**


John Regazzi discusses changes in his company's operations as well as trends in new product development in the online version of this interview: www.tmworld.com/2008_03.

Performance far beyond the price tag


3280 Series

Phase noise

X dB down

Channel power

High performance at an affordable price defines the new range of Aeroflex 3280 Series spectrum analyzers that span 3 Hz to 26.5 GHz.

A large, bright 10.4" TFT LCD display makes the 3280 Series stand out from the crowd while the Windows XP™ operating system provides a wide range of features and external interfaces. The built-in CD ROM drive provides easy update of printer drivers, allowing the user to choose any available modern printer and interface.

Three USB ports allow connection of peripherals such as printers and the ability to conveniently transport data in a variety of formats.

Standard built-in measurement functions include: SSB Phase Noise application plus measurements of Channel Power, Adjacent Channel Power (ACP), Occupied Bandwidth (OCBW) and Total Harmonic Distortion (THD).

Key performance features include:

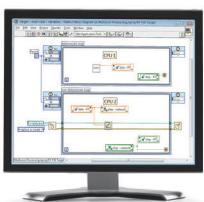
- Frequency ranges of 3 Hz to 3/13.2/26.5 GHz
- High level accuracy ± 0.15 dB up to 3 GHz
- +18 dBm Third Order Intermodulation performance
- Excellent LO phase noise <-113 dBc/Hz, 1 GHz/10 kHz offset
- Low DANL of <-140 dBm/Hz

www.aeroflex.com/farbeyondtmw

AEROFLEX
A passion for performance.

www.aeroflex.com

Maximize Multicore


Increase Your Performance with NI LabVIEW

Single-Core Application

Sequential C Program
on Multicore

**LabVIEW
on Multicore**

Using NI LabVIEW — an inherently parallel graphical programming language — you can take advantage of the latest advances in multicore systems, including real-time symmetric multiprocessing and FPGA-based embedded systems. LabVIEW simplifies visualizing and programming parallel applications for test, control, and embedded design. Using LabVIEW, customers are realizing up to a linear performance increase on their multicore systems.

>> Learn to maximize your multicore processor at ni.com/multicore

866 337 5041